Abstract:
A method for fabricating a semiconductor device is provided. A substrate comprising a P-well is provided. A low voltage device area and a high voltage device area are defined in the P-well. A photoresist layer is formed on the substrate. A photomask comprising a shielding region is provided. The shielding region is corresponded to the high voltage device area. A pattern of the photomask is transferred to the photoresist layer on the substrate by a photolithography process using the photomask. A P-type ion field is formed outside of the high-voltage device area by selectively doping P-type ions into the substrate using the photoresist layer as a mask.
Abstract:
A semiconductor device fabricating method is described. The semiconductor device fabricating method includes providing a substrate. A first gate insulating layer and a second gate insulating layer are formed on the substrate, respectively. A gate layer is blanketly formed. A portion of the gate layer, the first gate insulating layer and the second gate insulating layer are removed to form a first gate, a remaining first gate insulating layer, a second gate and a remaining second gate insulating layer. The remaining first gate insulating layer not covered by the first gate has a first thickness, and the remaining second gate insulating layer not covered by the second gate has a second thickness, wherein a ratio between the first thickness and the second thickness is about 10 to 20. A pair of first spacers and a pair of second spacers are formed on sidewalls of the first gate and the second gate, respectively.
Abstract:
A method for fabricating a semiconductor device is provided. A substrate comprising a P-well is provided. A low voltage device area and a high voltage device area are defined in the P-well. A photoresist layer is formed on the substrate. A photomask comprising a shielding region is provided. The shielding region is corresponded to the high voltage device area. A pattern of the photomask is transferred to the photoresist layer on the substrate by a photolithography process using the photomask. A P-type ion field is formed outside of the high-voltage device area by selectively doping P-type ions into the substrate using the photoresist layer as a mask.
Abstract:
A semiconductor device and a fabrication method thereof are provided. The semiconductor device includes a semiconductor substrate which comprise a first type well and a second type well, and a plurality of junction regions therebetween, wherein each of the junction regions adjoins the first and the second type wells. A gate electrode disposed on the semiconductor substrate and overlies at least two of the junction regions. A source and a drain are in the semiconductor substrate oppositely adjacent to the gate electrode.
Abstract:
A semiconductor device and a fabrication method thereof are provided. The semiconductor device includes a semiconductor substrate which comprise a first type well and a second type well, and a plurality of junction regions therebetween, wherein each of the junction regions adjoins the first and the second type wells. A gate electrode disposed on the semiconductor substrate and overlies at least two of the junction regions. A source and a drain are in the semiconductor substrate oppositely adjacent to the gate electrode.
Abstract:
An organic electroluminescent device and method of manufacturing the same are provided. The device comprises a plurality of lower electrodes and at least one insulation layer crossing said lower electrodes. The insulation layer consists of parts of a bottom, a neck, and a top, wherein the action width of the top thereof is smaller than the bottom, which when such formed as a organic light emitting layer, the organic light emitting layer can touch the bottom of the insulation layer to prevent the short circuit from the abnormal contact of the opposite electrode and lower electrode. Further, a separator can be formed between each of the lower electrodes. The separator and the insulation layer can define each pixel position within the organic electroluminescent device. Wherein, the separator can isolate the horizontal light source of the organic light emitting layer to reduce the crosstalk noise for pixels each other.
Abstract:
A method for controlling execution of camera related functions includes at least the following steps: while a camera is active in a specific operational mode, receiving a user input which includes a gesture pattern; searching a target command mapping from a plurality of pre-defined command mappings according to the gesture pattern, wherein each of the pre-defined command mappings defines at least one pre-defined camera related function mapped to a pre-defined gesture pattern; and controlling execution of each camera related function defined by the target command mapping.
Abstract:
A mobile device chip is provided. The mobile device chip includes a main processor, a multimedia processor, and a direct memory access (DMA) circuit. The multimedia processor is electrically coupled to the main processor. The DMA circuit accesses storage, and the DMA circuit is electrically coupled to the multimedia processor. When the mobile device chip operates in a normal mode, the main processor provides file accessing information of at least part of an audio file stored in the storage to the multimedia processor. When the mobile device chip operates in a power-saving mode, the multimedia processor obtains the data of the at least part of the audio file stored in the storage through the DMA circuit according to the file accessing information provided by the main processor.
Abstract:
A mobile device chip is provided. The mobile device chip includes a main processor, a multimedia processor, and a direct memory access (DMA) circuit. The multimedia processor is electrically coupled to the main processor. The DMA circuit accesses storage, and the DMA circuit is electrically coupled to the multimedia processor. When the mobile device chip operates in a normal mode, the main processor provides file accessing information of at least part of an audio file stored in the storage to the multimedia processor. When the mobile device chip operates in a power-saving mode, the multimedia processor obtains the data of the at least part of the audio file stored in the storage through the DMA circuit according to the file accessing information provided by the main processor.
Abstract:
A method for fabricating a semiconductor device is provided. A substrate comprising a P-well is provided. A low voltage device area and a high voltage device area are defined in the P-well. A photoresist layer is formed on the substrate. A photomask comprising a shielding region is provided. The shielding region is corresponded to the high voltage device area. A pattern of the photomask is transferred to the photoresist layer on the substrate by a photolithography process using the photomask. A P-type ion field is formed outside of the high-voltage device area by selectively doping P-type ions into the substrate using the photoresist layer as a mask.