Abstract:
A combined transaction execution monitoring, transaction classification and transaction execution performance anomaly detection system is disclosed. The system receives and analyzes transaction tracing data which may be provided by monitoring agents deployed to transaction executing entities like processes. In a first classification stage, parameters are extracted from received transaction tracing data, and the transaction tracing data is tagged with the extracted classification data. A subsequent measure extraction stage analyzes the classified transaction tracing data and creates corresponding measurements which are tagged with the transaction classifier. A following statistical analysis process maintains statistical data describing the long term statistical behavior of classified measures as a baseline, and also calculates corresponding statistical data describing the current statistical behavior of the classified measures. The statistical analysis process detects and notifies significant deviations between the statistical distribution of baseline and current measure data. A subsequent anomaly alerting and visualization stage processes those notifications.
Abstract:
A computer-implemented method is presented for simulating an orientation change on a computing device in a test environment. The method includes: retrieving an orientation action from a test script, the test script defined in accordance with a scripting language and the orientation action specifying an angle of rotation to simulate; setting a value of a window orientation variable in a web browser, the value of the window orientation variable correlating to the angle of rotation specified by the orientation action; issuing a resize command to a window resize function supported by the web browser; and issuing a change orientation event to a rendering engine associated with the web browser.
Abstract:
A performance monitoring system is presented for monitoring and tracing individual transactions, where transaction processing includes sending and receiving messages using messaging systems that do not allow the augmentation of existing messages with monitoring system specific correlation information. Agents are deployed to sender and receiver applications that monitor and report transactions. Both sender and receiver applications are instrumented with sensors that detect and report sending or receiving of such immutable messages. Those sensors also extract correlation data from sent and received data allowing the identification of matching corresponding send/receive pairs. A mapping agent is used to retrieve mapping information from a messaging system which may alter the additional message identification data while messages travel through the system. This mapping information is additionally used for the correlation process.
Abstract:
An automated system is presented for unit testing an application in a mainframe execution environment. The system includes a test configurator, a stub setup routine and an interceptor routine. The test configurator is configured to receive and parse a test input file, where the test input file includes a record for a particular file accessed by the application using the given type of file system. Upon reading the record, the test configurator calls the stub setup routine. The stub setup routine is associated with the given type of file system and creates an object for the particular file in the mainframe execution environment, such that the object is instantiated from a class representing the given type of file system. The interceptor routine is accessible by the application. In response to a given command issued by the application for the given type of file system, the interceptor routine operates to interact with methods provided by the object.
Abstract:
A performance management system is provided for monitoring performance of an application across a distributed computing environment, including within one or more mainframe computers. In the mainframe environment, a transaction manager is configured to receive a transaction request from an application executing remotely from the mainframe computer. An event agent is invoked via a user exit by the transaction manager and operates to detect events caused by the handling of the transaction by the transaction manager. Upon detecting such events, the event agent generates event messages for select events associated with the transaction, where the event message includes identifying information for the transaction. A translator agent is configured to receive the event messages from the event agent and transmit the event data record to a server located remotely from the mainframe computer, where the event data record includes the identifying information for the transaction.
Abstract:
The presented enhancement of a rule based instrumentation system taking object oriented inheritance relationships into account is directed to the detection and extraction to inheritance relationships relevant for the instrumentation process. Relevant inheritance relationships which have an impact on the instrumentation process and typically only represent a small fraction of the complete inheritance relationships of a monitored application. The small size of the relevant inheritance relationships allows, for example to prepare it in advance and ship it as part of a monitoring application or to transmit inheritance information between different local instrumentation engines being part of a distributed instrumentation system.
Abstract:
An automated system is presented for unit testing an application in a mainframe execution environment. The system includes a test configurator, a stub setup routine and an interceptor routine. The test configurator is configured to receive and parse a test input file, where the test input file includes a record for a particular file accessed by the application using the given type of file system. Upon reading the record, the test configurator calls the stub setup routine. The stub setup routine is associated with the given type of file system and creates an object for the particular file in the mainframe execution environment, such that the object is instantiated from a class representing the given type of file system. The interceptor routine is accessible by the application. In response to a given command issued by the application for the given type of file system, the interceptor routine operates to interact with methods provided by the object.
Abstract:
A computer-implemented method is provided for identifying items in loosely-structured data. The method generally includes constructing a composite data definition for items which are to be identified and parsing input data using the data definition. The composite data definition is constructed by defining a layout for a composite data definition, where the layout indicates at least one of positional relationship of data items to each other and positional information for data items in the loosely-structured data; arranging data items in the layout, where each data item in the layout has a common meaning for applications that use the data item; creating an identification order list for the composite data definition, where the identification order list includes the data items in the layout and specifies an order in which the data items comprising the composite data definition are to be identified within the loosely-structured data.
Abstract:
The presented enhancement of a rule based instrumentation system taking object oriented inheritance relationships into account is directed to the detection and extraction to inheritance relationships relevant for the instrumentation process. Relevant inheritance relationships which have an impact on the instrumentation process and typically only represent a small fraction of the complete inheritance relationships of a monitored application. The small size of the relevant inheritance relationships allows, for example to prepare it in advance and ship it as part of a monitoring application or to transmit inheritance information between different local instrumentation engines being part of a distributed instrumentation system.
Abstract:
A performance management system is provided that measures end user performance in a distributed computing environment. The system detects DOM updates caused by browser side activities, and identifies resource load requests introduced by a DOM update that request resource from third party sources. For such resource load requests, resource sensors are installed which detect the point in time when loading the resource was finished. This allows to measure load time for individual resource load requests requesting third party resources, and to assign the tracing and performance monitoring data describing those resource load requests to the tracing and performance monitoring data describing the browser side transaction execution that caused the third party resource loads.