Abstract:
The description relates to mobile device location. One example can identify global navigation satellite system (GNSS) satellites expected to be in line-of-sight of a mobile device. This example can detect differences between received GNSS data signals and expected GNSS data signals from the expected GNSS satellites. The example can also determine a direction from the mobile device of an obstruction that is causing at least some of the detected differences.
Abstract:
A method for a mix mode driver to accommodate traces of different lengths includes storing in the mix mode driver a set of one or more control signals and coefficient signals for a trace length. The one or more control signals select a number of the stages to generate a variable amplitude data output signal. Each stage is operable to increase or decrease a data signal, and each of the coefficient signals determines the magnitude of increase or decrease of the data input signal by a stage. A method for operating the mix mode driver includes generating the variable amplitude data output signal with one or more of the stages, and providing the variable amplitude data output signal to a trace.
Abstract:
Embodiments described herein generally relate to flash memory devices and methods for manufacturing flash memory devices. In one embodiment, a method for selective removal of nitrogen from the nitrided areas of a substrate is provided. The method comprises positioning a substrate comprising a material layer disposed adjacent to an oxide containing layer in a processing chamber, exposing the substrate to a nitridation process to incorporate nitrogen onto the material layer and the exposed areas of the oxide containing layer, and exposing the nitrided material layer and the nitrided areas of the oxide containing layer to a gas mixture comprising a quantity of a hydrogen containing gas and a quantity of an oxygen containing gas to selectively remove nitrogen from the nitrided areas of the oxide containing layer relative to the nitrided material layer using a radical oxidation process.
Abstract:
A system and method for acquiring position information of a movable apparatus relevant to a specific axis is disclosed. In one embodiment, an interferometer generates first and second beams and various beam-steering members are located to define beam path segments for the two beams, but no beam path segment varies in length in unity with displacements of the movable apparatus along the specific axis. In another or the same embodiment, each beam path segment in which the first beam either impinges or has been reflected from the movable apparatus is symmetrical to a corresponding beam path segment of the second beam. The movable apparatus may be a wafer stage in which the “specific axis” is the exposure axis of a projection lens, but with all optical members which cooperate with the stage being located beyond the ranges of the wafer stage in directions perpendicular to the lithographic exposure axis.
Abstract:
The position of a stage is determined. Images of a plurality of targets located on the stage are captured. The captured images of the plurality of targets are compared with stored images to determine displacement coordinates for each target. The displacement coordinates for the targets are translated into position coordinates for the stage.
Abstract:
A quick disconnect coupler includes a seal retaining member movably mounted in a coupler housing. A sealing washer biases the retaining member toward first position, and an annular seal is mounted in the retaining member. This annular seal defines both axial and radial sealing surfaces, and it is configured to transmit sufficient force to the seal retaining member to move the seal retaining member to a rearward position in response to a first, larger diameter plug bearing on the axial sealing surface, and to form a radial seal around a second, smaller diameter plug.
Abstract:
A quick disconnect coupler includes a seal retaining member movably in a coupler housing. A sealing washer biases the retaining member toward first position, and an annular seal is mounted in the retaining member. This annular seal defines both axial and radial sealing surfaces, and it is configured to transmit sufficient force to the seal retaining member to move the seal retaining member to a rearward position in response to a first, larger diameter plug bearing on the axial sealing surface, and to form a radial seal around a second, smaller diameter plug.
Abstract:
A method and apparatus makes rapid frequency measurements by measuring time intervals for a series of blocks of event counts with the number of events in each block held constant. This makes the numerator of the events/time relationship constant so it does not have to be measured, processed or stored. The frequency of the signal is determined by measuring the time interval, then taking the inverse of the measured value and multiplying by the appropriate constant. A fast inverse circuit uses a Taylor series expansion technique implemented in digital circuit, with the slope resolution adjusted for regions of small slope to improve accuracy.
Abstract:
A method of digitally controlling the gate for a timing counter, to open and close the gate based on the occurrence of signal events, rather than on the envelope of the pulse. In a particular embodiment, a digital divider controls the gate, so that, when a pulse burst of RF is encountered, the gate opens on the second signal event. The divider can be programmed to close the gate any number of signal events later. Measurements are taken for an integral number of signal events, while counting time events from a precision clock. A series of measurements can be taken with various integral numbers of signal events for frequency profiling. By incrementing the digital divider from n to n+1 signal events for successive measurements, and subtracting the results, very narrow gates are effectively generated which move through the pulse cycle by cycle for frequency profiling. Because the opening of the gate is triggered by the IF events themselves, the gate is reliably and accurately positioned with respect to the pulse, and is unaffected by jitter in the pulse repetition interval.
Abstract:
The description relates to mobile device location. One example can identify global navigation satellite system (GNSS) satellites expected to be in line-of-sight of a mobile device. This example can detect differences between received GNSS data signals and expected GNSS data signals from the expected GNSS satellites. The example can also determine a direction from the mobile device of an obstruction that is causing at least some of the detected differences.