Abstract:
The present invention provides an improved centric pier system and method for installation which in one embodiment includes a torsion adapter configured for slidable receipt of a torsion block assembly with a spherical support and a spherically rotatable torsion coupler; the torsion block assembly extending through a channel presented by vertical support at the torsion adapter which is aligned with the torsion block and the vertical support.
Abstract:
The present invention provides an improved centric pier system and method for installation which in one embodiment includes a torsion adapter configured for slidable receipt of a torsion block assembly with a spherical support and a spherically rotateable torsion coupler; the torsion block assembly extending through a channel presented by vertical support at the torsion adapter which is aligned with the torsion block and the vertical support.
Abstract:
A combination of accessories for use in a deer blind includes a gun rest and a gun barrel sleeve. The gun rest is a three dimensional structure such as a lightweight block having different dimensions to allow different height positioning of a gun. The gun barrel sleeve covers at least the portion of the gun barrel. The gun barrel sleeve may be stored in a hollow opening provided in the gun rest.
Abstract:
A vision system useful in acquiring images includes: a light dome having a window and a perimeter; an annular light curtain positioned within and radially inwardly from the perimeter of the light dome such that an annular gap is formed between the light dome and the light curtain; and a light ring positioned to illuminate the gap between the light dome and the light curtain. The light curtain and window are sized and positioned such that no direct light from the light ring reaches the window. The system further comprises a camera having a lens facing the window to acquire images of an object on a side of the window opposite the camera. The images acquired by the camera can then be compared to stored images to determine whether the identity of the objects (which may be pharmaceutical tablets) is as expected.
Abstract:
A vision system useful in acquiring images includes: a light dome having a window and a perimeter; an annular light curtain positioned within and radially inwardly from the perimeter of the light dome such that an annular gap is formed between the light dome and the light curtain; and a light ring positioned to illuminate the gap between the light dome and the light curtain. The light curtain and window are sized and positioned such that no direct light from the light ring reaches the window. The system further comprises a camera having a lens facing the window to acquire images of an object on a side of the window opposite the camera. The images acquired by the camera can then be compared to stored images to determine whether the identity of the objects (which may be pharmaceutical tablets) is as expected.
Abstract:
A method of producing an image of an object residing inside a transparent container of a first color includes: illuminating the container and the object with light of a second color, the second color being substantially the inverse of the first color; and producing an image of the object through the container. An image produced by this method can exhibit substantially the same color as the object itself, even when the image is taken through a colored transparent wall.
Abstract:
An automated method for dispensing pharmaceuticals particularly tablets and capsules, and other small discrete objects, includes: receiving prescription information, selecting a container, labeling the container, dispensing the tablets or capsules into the labeled container, applying a closure to the filled, labeled container, and offloading the container to a designated location. Preferably, the tablets are dispensed with high speed dispensing bins that employ forced air to agitate and singulate the tablets. The other functions within the system are typically carried out at stations designed to offer speed, flexibility and precision to the dispensing operation.
Abstract:
An automated method for dispensing pharmaceuticals particularly tablets and capsules, and other small discrete objects, includes: receiving prescription information, selecting a container, labeling the container, dispensing the tablets or capsules into the labeled container, applying a closure to the filled, labeled container, and offloading the container to a designated location. Preferably, the tablets are dispensed with high speed dispensing bins that employ forced air to agitate and singulate the tablets. The other functions within the system are typically carried out at stations designed to offer speed, flexibility and precision to the dispensing operation.
Abstract:
An automated method for dispensing pharmaceuticals particularly tablets and capsules, and other small discrete objects, includes: receiving prescription information, selecting a container, labeling the container, dispensing the tablets or capsules into the labeled container, applying a closure to the filled, labeled container, and offloading the container to a designated location. Preferably, the tablets are dispensed with high speed dispensing bins that employ forced air to agitate and singulate the tablets. The other functions within the system are typically carried out at stations designed to offer speed, flexibility and precision to the dispensing operation.