Abstract:
Systems, methods, and devices for monitoring one or more capacitor banks are presented herein. One concept of the present disclosure is directed to a method of monitoring at least one capacitor bank having a plurality of steps. The method includes: receiving measurements indicative of voltages and/or currents on electrical lines coupled to the steps of the capacitor bank by corresponding contactors; receiving information indicative of the respective statuses of the contactors; timestamping the measurements and contactor status information; storing the timestamped measurements with corresponding timestamped contactor status information; determining a rate of change of a parameter indicative of or derived from at least the measurements associated with at least one of the steps in the capacitor bank; comparing the determined rate of change with a baseline rate of change to produce a deviation; determining if the deviation satisfies a criterion; and, if so, indicating the deviation satisfied the criterion.
Abstract:
Systems, methods, and devices for monitoring one or more capacitor banks are presented herein. One concept of the present disclosure is directed to a method of monitoring at least one capacitor bank having a plurality of steps. The method includes: receiving measurements indicative of voltages and/or currents on electrical lines coupled to the steps of the capacitor bank by corresponding contactors; receiving information indicative of the respective statuses of the contactors; timestamping the measurements and contactor status information; storing the timestamped measurements with corresponding timestamped contactor status information; determining a rate of change of a parameter indicative of or derived from at least the measurements associated with at least one of the steps in the capacitor bank; comparing the determined rate of change with a baseline rate of change to produce a deviation; determining if the deviation satisfies a criterion; and, if so, indicating the deviation satisfied the criterion.
Abstract:
A method of performing a sequence-of-events analysis in a power monitoring system includes the acts of monitoring, receiving, analyzing, and storing. The act of monitoring includes monitoring messages published by multiple power monitors over a peer-to-peer communications network. The messages include electrical power monitoring parameters. The act of receiving includes receiving the published messages in a subscriber intelligent electronic device in the power monitoring system. The act of analyzing includes analyzing at least a portion of the received messages, performing statistical analysis and/or continuously scanning for an event of interest. The act of storing includes storing at least one record including at least one of statistical data or event of interest data.
Abstract:
An intelligent electronic device (IED) integrating a power metering unit (PMU) and a merging unit that combines signals from both analog transformers and digital transformers into a set of merged digital samples. Analog current/voltage signals from analog CTs/PTs are received at the IED's analog inputs and converted to digitized samples. Digital current/voltage samples from digital CTs/PTs are received via point-to-point connections at digital inputs of the IED. A tagging unit applies metadata tags to the digitized and digital samples. The metadata tags include the transformer providing the input signal, sampling rate, primary and/or secondary timestamps, scaling values, calibration values, and/or the location of the IED in the electrical system. The PMU performs metering and/or power quality calculations on the samples, and the calculation results are formatted and transmitted via a master-slave protocol to a requesting master. A grouping unit groups the merged samples into default or custom groupings, which are formatted and transmitted over a network via a publish-subscribe mechanism.
Abstract:
A method of performing a sequence-of-events analysis in a power monitoring system includes the acts of monitoring, receiving, analyzing, and storing. The act of monitoring includes monitoring messages published by multiple power monitors over a peer-to-peer communications network. The messages include electrical power monitoring parameters. The act of receiving includes receiving the published messages in a subscriber intelligent electronic device in the power monitoring system. The act of analyzing includes analyzing at least a portion of the received messages, performing statistical analysis and/or continuously scanning for an event of interest. The act of storing includes storing at least one record including at least one of statistical data or event of interest data.
Abstract:
An intelligent electronic device (IED) integrating a power metering unit (PMU) and a merging unit that combines signals from both analog transformers and digital transformers into a set of merged digital samples. Analog current/voltage signals from analog CTs/PTs are received at the IED's analog inputs and converted to digitized samples. Digital current/voltage samples from digital CTs/PTs are received via point-to-point connections at digital inputs of the IED. A tagging unit applies metadata tags to the digitized and digital samples. The metadata tags include the transformer providing the input signal, sampling rate, primary and/or secondary timestamps, scaling values, calibration values, and/or the location of the IED in the electrical system. The PMU performs metering and/or power quality calculations on the samples, and the calculation results are formatted and transmitted via a master-slave protocol to a requesting master. A grouping unit groups the merged samples into default or custom groupings, which are formatted and transmitted over a network via a publish-subscribe mechanism.