Abstract:
Packaged fluid receptacles include: a plurality of fluid receptacles arranged one next to the other to form a composite structure having a top surface, bottom surface and end walls at a first end and a second end and having a longitudinal axis which extends through the end walls; and a removable support which contacts at least the top surface, bottom surface and end walls, the removable support including an attachment for applying a force in a direction along the longitudinal axis. Preferably, the packaged fluid receptacles are cuvettes usable in a clinical analyzer. A method for inserting a plurality of cuvettes into a clinical analyzer includes: providing packaged cuvettes as described above; inserting the packaged cuvettes into a cuvette loading station of a clinical analyzer in a manner in which the tab remains accessible to application of a force; securing the packaged cuvettes in the loading station; applying a force to the tab in a direction toward the first end to peel back the support from the cuvettes; and removing the support to provide individual cuvettes.
Abstract:
A method for measuring the presence or concentration of an analyte in a sample by spectrophotometry: providing an open top cuvette having a sample with an analyte to be measured; providing a light source and a detector for detecting emitted light; taking at least two measurements that includes: (i) directing at least two beams of light from the light source to different locations on the cuvette; (ii) passing the at least two beams through the cuvette at their respective locations and through the sample to be measured; and (iii) measuring at least two respective emitted light beams with the detector; and comparing the at least two emitted light beams to determine if: all the emitted light beams should be disregarded; one or more of the emitted light beams should be disregarded; or the sample absorbances should be averaged. In a preferred embodiment, the method includes taking at least three measurements. In another preferred embodiment, the spectrophotometry is absorption spectrophotometry, and the method is performed on a diagnostic analyzer.
Abstract:
Packaged fluid receptacles include: a plurality of fluid receptacles arranged one next to the other to form a composite structure having a top surface, bottom surface and end walls at a first end and a second end and having a longitudinal axis which extends through the end walls; and a removable support which contacts at least the top surface, bottom surface and end walls, the removable support including an attachment for applying a force to remove the support, preferably in a direction along the longitudinal axis. In a preferred embodiment, the support is one-piece and has a single attachment. Preferably, the packaged fluid receptacles are cuvettes usable in a clinical analyzer. A method for inserting a plurality of cuvettes into a clinical analyzer includes: providing packaged cuvettes as described above; inserting the packaged cuvettes into a cuvette loading station of a clinical analyzer in a manner in which the tab remains accessible to application of a force; securing the packaged cuvettes in the loading station; applying a force to the tab to peel back the support from the cuvettes; and removing the support to provide individual cuvettes.
Abstract:
Packaged fluid receptacles include: a plurality of fluid receptacles arranged one next to the other to form a composite structure having a top surface, bottom surface and end walls at a first end and a second end and having a longitudinal axis which extends through the end walls; and a removable support which contacts at least the top surface, bottom surface and end walls, the removable support including an attachment for applying a force to remove the support, preferably in a direction along the longitudinal axis. In a preferred embodiment, the support is one-piece and has a single attachment. Preferably, the packaged fluid receptacles are cuvettes usable in a clinical analyzer. A method for inserting a plurality of cuvettes into a clinical analyzer includes: providing packaged cuvettes as described above; inserting the packaged cuvettes into a cuvette loading station of a clinical analyzer in a manner in which the tab remains accessible to application of a force; securing the packaged cuvettes in the loading station; applying a force to the tab to peel back the support from the cuvettes; and removing the support to provide individual cuvettes.
Abstract:
A magnetic assembly for detection and authentication of magnetic documents. The magnetic assembly includes a permanent magnet (PM), first and second magnetically soft high permeability pole pieces shaped to form a tapered, variable gap size magnetic circuit with the permanent magnet. The PM is located at a first gap between the first and second pole pieces. A magnetoresistive (MR) sensing element is located at or near the center of a second gap between said first and second pole pieces. The second gap and MR sensing element are proximate a magnetic document to be sensed. An electrical conductor is adjacent to the MR sensing element, but is electrically insulated therefrom. A direct current is passed through the electrical conductor to create a compensating bias field in the MR element which is combined with the bias field generated by the PM.
Abstract:
A method for measuring the presence or concentration of an analyte in a sample by spectrophotometry: providing an open top cuvette having a sample with an analyte to be measured; providing a light source and a detector for detecting emitted light; taking at least two measurements that includes: (i) directing at least two beams of light from the light source to different locations on the cuvette; (ii) passing the at least two beams through the cuvette at their respective locations and through the sample to be measured; and (iii) measuring at least two respective emitted light beams with the detector; and comparing the at least two emitted light beams to determine if: all the emitted light beams should be disregarded; one or more of the emitted light beams should be disregarded; or the sample absorbances should be averaged. In a preferred embodiment, the method includes taking at least three measurements. In another preferred embodiment, the spectrophotometry is absorption spectrophotometry, and the method is performed on a diagnostic analyzer.
Abstract:
Packaged fluid receptacles include: a plurality of fluid receptacles arranged one next to the other to form a composite structure having a top surface, bottom surface and end walls at a first end and a second end and having a longitudinal axis which extends through the end walls; and a removable support which contacts at least the top surface, bottom surface and end walls, the removable support including an attachment for applying a force to remove the support, preferably in a direction along the longitudinal axis. In a preferred embodiment, the support is one-piece and has a single attachment. Preferably, the packaged fluid receptacles are cuvettes usable in a clinical analyzer. A method for inserting a plurality of cuvettes into a clinical analyzer includes: providing packaged cuvettes as described above; inserting the packaged cuvettes into a cuvette loading station of a clinical analyzer in a manner in which the tab remains accessible to application of a force; securing the packaged cuvettes in the loading station; applying a force to the tab to peel back the support from the cuvettes; and removing the support to provide individual cuvettes.
Abstract:
A method for measuring the presence or concentration of an analyte in a sample by spectrophotometry: providing an open top cuvette having a sample with an analyte to be measured; providing a light source and a detector for detecting emitted light; taking at least two measurements that includes: (i) directing at least two beams of light from the light source to different locations on the cuvette; (ii) passing the at least two beams through the cuvette at their respective locations and through the sample to be measured; and (iii) measuring at least two respective emitted light beams with the detector; and comparing the at least two emitted light beams to determine if: all the emitted light beams should be disregarded; one or more of the emitted light beams should be disregarded; or the sample absorbances should be averaged. In a preferred embodiment, the method includes taking at least three measurements. In another preferred embodiment, the spectrophotometry is absorption spectrophotometry, and the method is performed on a diagnostic analyzer.
Abstract:
A method for measuring the presence or concentration of an analyte in a sample by spectrophotometry: providing an open top cuvette having a sample with an analyte to be measured; providing a light source and a detector for detecting emitted light; taking at least two measurements that includes: (i) directing at least two beams of light from the light source to different locations on the cuvette; (ii) passing the at least two beams through the cuvette at their respective locations and through the sample to be measured; and (iii) measuring at least two respective emitted light beams with the detector; and comparing the at least two emitted light beams to determine if: all the emitted light beams should be disregarded; one or more of the emitted light beams should be disregarded; or the sample absorbances should be averaged. In a preferred embodiment, the method includes taking at least three measurements. In another preferred embodiment, the spectrophotometry is absorption spectrophotometry, and the method is performed on a diagnostic analyzer.
Abstract:
Apparatus and method for detecting patient sample quality, and/or analytes, in the tip used to aspirate the patient sample liquid and then dispense it onto a slide test element. Spectrophotometric analysis is done on the liquid while still in the tip, by scanning the tip for transmittance in a light-tight enclosure, using NIR and adjacent visible radiation, and detecting the absorbence spectra of the liquid. Much smaller liquid volumes, and no through-the-label detection, are required, compared to doing the scanning of the liquid in a primary patient collection container.