Abstract:
A system for enhancing images from an electro-optic imaging sensor and for reducing the necessary focal length of a sensor while preserving system acuity. This system uniquely reduces the necessary focal length and enhances images by collecting a video sequence, estimating motion associate with this sequence, assembling video frames into composite images, and applying image restoration to restore the composite image from pixel, lens blur, and alias distortion. The invention synthetically increases the pixel density of the focal plane array. Thus it reduces the necessary size of the projected blur circle or equivalently it reduces the minimum focal length requirements.
Abstract:
The present invention is directed to a method for making infrared transmitting graded index optical elements by selecting at least two different infrared-transmitting materials, each with a different refractive index, having similar thermo-viscous behavior; assembling the infrared-transmitting materials into a stack comprising one or more layers of each infrared-transmitting material resulting in the stack having a graded index profile; and forming the stack into a desired shape. Also disclosed is the related optical element made by this method.
Abstract:
The present invention is directed to a method for making infrared transmitting graded index optical elements by selecting at least two different infrared-transmitting materials, each with a different refractive index, having similar thermo-viscous behavior; assembling the infrared-transmitting materials into a stack comprising one or more layers of each infrared-transmitting material resulting in the stack having a graded index profile; and forming the stack into a desired shape. Also disclosed is the related optical element made by this method.
Abstract:
A method and system is provided for performing high-resolution image assembly regardless of observed scene content. An imaging system, including a focal plane array and lenslet array can be calibrated to account for subimage shifts. A calibration module can determine the subimage shifts by calculating an average point source position reference point coordinates for each of the subimages, and then determining the difference between the average point source position and the reference point coordinates for each subimage. The imaging system can then be calibrated utilizing the subimage shifts for each of the plurality of subimages. Finally, an assembly module can perform a high-resolution image assembly with the calibrated imaging system.
Abstract:
A method and system is provided for performing high-resolution image assembly regardless of observed scene content. An imaging system, including a focal plane array and lenslet array can be calibrated to account for subimage shifts. A calibration module can determine the subimage shifts by calculating an average point source position reference point coordinates for each of the subimages, and then determining the difference between the average point source position and the reference point coordinates for each subimage. The imaging system can then be calibrated utilizing the subimage shifts for each of the plurality of subimages. Finally, an assembly module can perform a high-resolution image assembly with the calibrated imaging system.