Abstract:
Apparatus and methods for the production of hydrogen using a reformer including a housing, a first plate having a first plurality of fin structures and a second plate having a second plurality of fin structures assembled such that the first plurality of fin structures is interleaved with the second plurality of fin structures. At least one inlet port is formed in at least one of the first plate and the second plate, and at least one outlet port is formed in at least one of the first plate and the second plate. The fin structures may be coated with a catalytic material to enhance or stimulate reactions taking place within the apparatus. A heat exchange device may also be integrated into one or both plates of the reformer.
Abstract:
A fuel processing system for converting a logistical fuel and air into a liquid product comprising methanol. One such system comprises a fuel injection system configured to combine a logistical fuel and ambient air to produce a logistical fuel and air mixture, a synthesis gas production system configured to convert the logistical fuel and air mixture to synthesis gas, and a methanol synthesis system configured to convert the synthesis gas to a crude methanol liquid. Related methods are additionally disclosed.
Abstract:
Methods and systems of providing a source of hydrogen and oxygen with high volumetric energy density, as well as a power systems useful in non-air breathing engines such as those in, for example, submersible vehicles, is disclosed. A hydride reactor may be utilized in forming hydrogen from a metal hydride and a peroxide reactor may be utilized in forming oxygen from hydrogen peroxide. The high temperature hydrogen and oxygen may be converted to water using a solid oxide fuel cell, which serves as a power source. The power generation system may have an increased energy density in comparison to conventional batteries. Heat produced by exothermic reactions in the hydride reactor and the peroxide reactor may be transferred and utilized in other aspects of the power generation system. High temperature water produced during by the peroxide reactor may be used to fuel the hydride reactor.
Abstract:
Disclosed herein are supersonic separation systems that can be used for the removal of CO2 from a mixed gas stream. Also disclosed are methods for the separation and subsequent collection of solidified CO2 from a gas stream.
Abstract:
Hypersonic inlet systems and methods are disclosed. In one embodiment, an inlet for an airbreathing propulsion system includes an inboard surface at least partially shaped to conform to a plurality of streamline-traces of a design flowfield approaching an aperture, an outboard surface spaced apart from the inboard surface, an upper surface extending between the inboard and outboard surfaces, and a lower surface extending between the inboard and outboard surfaces, wherein leading edges of the inboard, outboard, upper, and lower surfaces cooperatively define the aperture.
Abstract:
Methods and systems of providing a source of hydrogen and oxygen with high volumetric energy density, as well as a power systems useful in non-air breathing engines such as those in, for example, submersible vehicles, is disclosed. A hydride reactor may be utilized in forming hydrogen from a metal hydride and a peroxide reactor may be utilized in forming oxygen from hydrogen peroxide. The high temperature hydrogen and oxygen may be converted to water using a solid oxide fuel cell, which serves as a power source. The power generation system may have an increased energy density in comparison to conventional batteries. Heat produced by exothermic reactions in the hydride reactor and the peroxide reactor may be transferred and utilized in other aspects of the power generation system. High temperature water produced during by the peroxide reactor may be used to fuel the hydride reactor.
Abstract:
Apparatus and methods for the production of hydrogen using a reformer including a housing, a first plate having a first plurality of fin structures and a second plate having a second plurality of fin structures assembled such that the first plurality of fin structures is interleaved with the second plurality of fin structures. At least one inlet port is formed in at least one of the first plate and the second plate, and at least one outlet port formed in at least one of the first plate and the second plate. The fin structures may be coated with a catalytic material to enhance or stimulate reactions taking place within the apparatus. A heat exchange device may also be integrated into one or both plates of the reformer.
Abstract:
A scramjet has a cowl, a center structure, and a plurality of wide pylons connecting the cowl to the center structure, with scramjet engines positioned between adjacent pylons. Leading surfaces of adjacent pylons converge to one another to provide side wall compression to air entering the engines. The center structure includes a fore body, a center body and an aft body that, with the pylons, define a basic structure either formed entirely from one piece or several securely connected pieces. A method of testing the scramjet projectile comprises using a gun to accelerate the scramjet projectile to the takeover velocity of the engines.
Abstract:
Disclosed herein are supersonic separation systems that can be used for the removal of CO2 from a mixed gas stream. Also disclosed are methods for the separation and subsequent collection of solidified CO2 from a gas stream.