Abstract:
A mirror optic (10) is provided for near-field optical measurement of a specimen (1), wherein the mirror optic (10) has a reflector (11) with the shape of a paraboloid with a paraboloid axis (12) and a focal point (13), which can be illuminated along a first illumination beam path (I), whereby the reflector 11 has at least one edge recess (14) in such a way that the focal point (13) can be illuminated along a second illumination beam path (II) which deviates from the first illumination beam path (I). A near-field microscope with such a mirror optic is also provided.
Abstract:
Frequency triplicator for microwaves having frequencies above about 30 GHz, for example 70 GHz, comprising a non-linear element of a weakly doped semiconductor material, in particular n-Si with a carrier concentration of 10.sup.13 cm.sup.-3 and less.
Abstract:
In the representative embodiments described herein, an attenuator of optical radiation, and specifically high-intensity laser radiation, comprises a plurality of diffracting sheet members, containing a plurality of apertures, disposed at an angle to the incident radiation. The sheet members may be wire screens and the attenuator may include a plurality of such screens disposed at different angles and having different mesh orientations.
Abstract:
Described are methods for acquiring optical near-field interaction signals in the infrared spectral region, involving the steps of: illuminating an object combination comprising at least two objects (1, 2) with infrared radiation so that an infrared near-field coupling is produced between the objects (1, 2); and acquiring the scattered light which is scattered by the object combination, which scattered light comprises a fraction(s) that has been modified as a result of the near-field coupling; wherein at least one of the objects (1, 2) comprises a polar material which at least in part comprises a polar solid-state structure; and during illumination in at least one of the objects (1, 2) with the polar material at least one phonon resonance is excited with which the modified fraction(s) of the scattered light is strengthened. Also described are applications of the method in the fields of metrology, data storage technology and optical signal processing.
Abstract:
An infrared polarizer has a transparent substrate on which a pattern of spaced metal stripes is deposited. The stripe thickness is approximately equal to at least the stripe spacing which results in a substantial increase of the polarization contrast as compared to that of conventional polarizers having thinner stripes.
Abstract:
Scanning tip for electromagnetic radiation having wavelengths below about 3 cm comprising a waveguide (10) which acts as high-frequency hollow waveguide and which comprises a wall (12) of an electrically conductive material and the internal cross-section of which diminishes from a point at which it has a magnitude which permits unrestricted propagation of the radiation perpendicularly to the cross-sectioin to an end aperture (14) having a dimension (s) which is small in comparison with the wavelength of the radiation, having a rod (20) which comprises an electrically conductive surface which is electrically insulated with respect to an electrically conductive inner wall of the hollow waveguide and extends from the aperture (14) at least up to said location (z=0).
Abstract:
An optical arrangement is described, which has an optically effective arrement and a supporting structure therefor. The optically effective arrangement has such a slight thickness which alone is not sufficiently stable mechanically and which is designed for the transmission of optical radiation of a predetermined wavelength region. The supporting arrangement has a metallic planar structure with a plurality of apertures separated by webs. The width (a) of the apertures is larger than the half of the wave length and the sum (a+b) of the width of an aperture (14) and of an adjoining web (12) is smaller than the wave length. Such supporting arrangement transmits a vertically incident radiation without loss. Optical arrangement (10) mounted on the support structure can be, for example, an optically effective layer or a grid of parallel thin wires which rung perpendicularly with respect to the slot-like apertures of the supporting structure.
Abstract:
A mirror optic (10), particularly for near-field optical measurement of a specimen (1) is described, which mirror optic (10) has a reflector (11) with the shape of a paraboloid with a paraboloid axis (12) and a focal point (13), which can be illuminated along a first illumination beam path (I), whereby the reflector 11 has at least one edge recess (14) in such a way that the focal point (13) can be illuminated along a second illumination beam path (II) which deviates from the first illumination beam path (I). A near-field microscope with such a mirror optic is also described.
Abstract:
A spectroscopy method is defined in which a first source of radiation (51) emits a periodically pulsed beam (A) having a repetition frequency .omega. and in that a second source of radiation (52) emits a periodically pulsed beam (B) having a repetition frequency .omega.+.DELTA., the beams are united with each other and directed at a material specimen (6) to be analyzed and a detector means determines the amplitudes of the frequency components n.DELTA. of the beam emanating from the material specimen.