Abstract:
The present invention is related to optical non-invasive methods and instruments to detect the level of analyte concentrations in the tissue of a subject. The spectra of mid-infrared radiation emitted from a subject's body are altered corresponding to the concentration of various compounds within the radiating tissue. In one aspect of the invention, an instrument floods a body surface of the subject, such as the subject's eye, with radiation in the mid-infrared range and measures analyte concentrations based on mid-infrared radiation reflected back to the instrument.
Abstract:
A test strip includes a first layer and an overlying differential flow-retarding layer that reduces the fraction of a component of a liquid specimen percolated therethrough. An inert backing, preferably having an aperture therethrough, overlies the flow-retarding layer. For the testing of a blood specimen, the flow-retarding layer is formed of glass fibers that reduce the fraction of red blood cells in the percolate, leaving primarily, but not entirely, plasma in the percolate. The first layer includes chemicals that react with a component of the plasma such as glucose in a measurable reaction, preferably a visually measurable reaction. In using this test strip, the blood specimen is placed into the aperture of the backing and permitted to percolate through the flow-retarding layer such that a fraction of the red blood cells is removed from the percolate. The chemicals in the first layer react with the glucose in the plasma to produce a change that is visually measurable from the bottom side of the active layer with reduced visual interference from the red color of whole blood on the bottom side of the reaction layer.
Abstract:
The present invention is related to non-invasive methods and instruments to detect the level of analyte concentrations in the tissue of a subject by measuring electromagnetic radiation signatures from the subject's conjunctiva. The spectra of mid-infrared radiation emitted from a subject's body are altered corresponding to the concentration of various compounds within the radiating tissue. In one aspect of the invention, an instrument floods the conjunctiva of the subject with electromagnetic radiation in the mid-infrared range and measures analyte concentrations based on mid-infrared radiation reflected back to the instrument.
Abstract:
The present invention is related to optical non-invasive methods and instruments to detect the level of analyte concentrations in the tissue of a subject. The spectra of mid-infrared radiation emitted from a subject's body are altered corresponding to the concentration of various compounds within the radiating tissue. In one aspect of the invention, an instrument measures the level of mid-infrared radiation from the subject's body surface, such as the eye, and determines a specific analyte's concentration based on said analyte's distinctive mid-infrared radiation signature.
Abstract:
The present invention is related to non-invasive methods and instruments to detect the level of analyte concentrations in the tissue of a subject by measuring electromagnetic radiation signatures from the subject's conjunctiva. The spectra of mid-infrared radiation emitted from a subject's body are altered corresponding to the concentration of various compounds within the radiating tissue. In one aspect of the invention, an instrument floods the conjunctiva of the subject with electromagnetic radiation in the mid-infrared range and measures analyte concentrations based on mid-infrared radiation reflected back to the instrument.