Abstract:
A stress-decoupling device and methods of using same in a cooled grazing-incidence collector (GIC) mirror system are disclosed. A method includes providing a cooled GIC shell, providing input and output primary cooling-fluid manifolds, and fluidly connecting the cooled GIC shell to the input and output primary cooling-fluid manifolds through respective stress-decoupling devices. An exemplary stress-decoupling device includes inner and outer bellows that define a sealed cavity filled with a gas. An expansion-limiting member within the sealed cavity limits the expansion of the inner bellows due to the pressure of the cooling fluid flowing therethrough. The stress-decoupling device reduces or prevents the communication of stress from parts of the GIC mirror system to the GIC shells. Stress-decoupling systems and methods for a cooled spider as used in a GIC mirror system are also disclosed.
Abstract:
A stress-decoupling device and methods of using same in a cooled grazing-incidence collector (GIC) mirror system are disclosed. A method includes providing a cooled GIC shell, providing input and output primary cooling-fluid manifolds, and fluidly connecting the cooled GIC shell to the input and output primary cooling-fluid manifolds through respective stress-decoupling devices. An exemplary stress-decoupling device includes inner and outer bellows that define a sealed cavity filled with a gas. An expansion-limiting member within the sealed cavity limits the expansion of the inner bellows due to the pressure of the cooling fluid flowing therethrough. The stress-decoupling device reduces or prevents the communication of stress from parts of the GIC mirror system to the GIC shells. Stress-decoupling systems and methods for a cooled spider as used in a GIC mirror system are also disclosed.
Abstract:
Systems, assemblies and methods for thermally managing a grazing incidence collector (GIC) for EUV lithography applications are disclosed. The GIC thermal management assembly includes a GIC mirror shell interfaced with a jacket to form a sealed chamber. An open cell, heat transfer (OCHT) material is disposed within the metal chamber and is thermally and mechanically bonded with the GIC mirror shell and jacket. A coolant is flowed in an azimuthally symmetric fashion through the OCHT material between input and output plenums to effectuate cooling when the GIC thermal management assembly is used in a GIC mirror system configured to receive and form collected EUV radiation from an EUV radiation source.
Abstract:
Systems, assemblies and methods for thermally managing a grazing incidence collector (GIC) for EUV lithography applications are disclosed. The GIC thermal management assembly includes a GIC mirror shell interfaced with a jacket to form a sealed chamber. An open cell, heat transfer (OCHT) material is disposed within the metal chamber and is thermally and mechanically bonded with the GIC mirror shell and jacket. A coolant is flowed in an azimuthally symmetric fashion through the OCHT material between input and output plenums to effectuate cooling when the GIC thermal management assembly is used in a GIC mirror system configured to receive and form collected EUV radiation from an EUV radiation source.