Abstract:
In a liquid crystal display comprising a plurality of pixels each of which has an switching element, a plurality of drain drivers and gate drivers for operating the switching elements and the pixels, and a plurality of drain lines and gate lines supplying signals from the drain drivers and the gate drivers to the switching elements being formed on one of a pair of substrates sandwiching a liquid crystal layer, the present invention provides wiring lines formed on the one of a pair of substrates for transferring display data signals and a clock signal between each pair of the plurality of drain drivers adjacent to one another, and provides at least one gate circuit for at least one of the plurality of drain drivers which is controlled by the clock signal and switches the display data signals and the clock signal either (1) to be acquired by the at least one of the plurality of drain drivers or (2) to be transferred to another of the plurality of drain drivers arranged adjacent to the at least one of the plurality of drain drivers. This liquid crystal display device has an advantage, for instance, or of suppressing electromagnetic interference (EMI) to another equipment surrounding the liquid crystal display device, of preventing the display data signals or the clock signal from being distorted in the wiring lines.
Abstract:
In a display device including a display panel and a multi-layered printed circuit board which is arranged along one side of the display panel and is electrically connected to a plurality of leads of the display panel through a plurality of tape carrier packages, according to the present invention, a plurality of slits or notches are formed in a sheet fiber member which is impregnated with resin and constitutes a base sheet of the multi-layered printed circuit board along one side of the display panel. The discontinuity of the sheet fiber member formed by the slits or the notches absorbs the difference in thermal expansion of the multi-layered printed circuit board and the display panel due to the change of an ambient temperature of the display device and hence, it is possible to prevent peeling of the tape carrier package from the display panel or breaking of the tape carrier package per se.
Abstract:
The present invention concerns an information access device for utilizing a supposed information service, which possesses an information-inputting device. The information access device according to one embodiment of the present invention comprises a usage discrimination part which judges whether the information-inputting device is utilized for said intended information service or unintended usage, based on prescribed information from said information inputting device.
Abstract:
A level converter circuit includes an input terminal adapted to be supplied with a signal swinging from a first voltage to a second voltage lower than the first voltage; a first transistor having a gate electrode connected to the input terminal, and a source electrode connected to ground potential; a second transistor having a gate electrode connected to a drain electrode of the first transistor, a source electrode connected to a supply voltage, and a drain electrode connected to an output terminal; a load circuit connected between the gate electrode of the second transistor and the supply voltage; a third transistor having a source electrode connected to the input terminal, a drain electrode connected to the output terminal, and a gate electrode supplied with a DC voltage higher than the second voltage and lower than the first voltage. The level converter circuit outputs a third voltage higher than the second voltage when the input terminal is supplied with the first voltage, and the level converter circuit outputs the second voltage when the input terminal is supplied with the second voltage.
Abstract:
In a liquid crystal display device having a flexible printed circuit board which includes a laminated structure of a pair of flexible films, a plurality of first conductive layers interposed between inner surfaces of the flexible films to be spaced from each other, and a plurality of groups of terminals formed on an outer surface of one of flexible films opposite to the respective first conductive layers, and a liquid crystal display panel which includes a plurality of groups of wirings formed on one of a pair of substrates thereof and connected to the plurality of groups of terminals respectively, the present invention interposes second conductive layers at respective portions spacing the plurality of first conductive layers between the inner surfaces of the flexible films and prevents the one of the pair of substrates from being cracked when the plurality of terminals of the flexible printed circuit board are connected to the groups of wiring of the one of the substrates by compression bonding thereby.
Abstract:
An integrated circuit formed on a semiconductor chip includes voltage regulators for stepping down an externally-supplied power voltage to produce an internal power voltage, and internal circuits which operate based on the internal power voltage. The voltage regulators are laid in the area of the buffers and protective elements for the input/output signals and power voltages so that the overhead area due to the on-chip provision of the voltage regulators is minimized. The internal power voltage is distributed to the internal circuits through a looped main power line, with an electrode pad for connecting an external capacitor for stabilizing the internal power voltage being provided on it, so that the internal power voltage is stabilized and the power consumption of the integrated circuit is minimized.
Abstract:
A liquid crystal display device includes a liquid crystal display panel and a lighting device. The lighting device is supplied with alternately a first current during a period t1, and a second current during a second period t2 such that electric power E1 is lower than electric power E2. E1 is defined as (t1nullipnullp(1)nullVpnullp(1))/2null(t2nullipnullp(2)nullVpnullp(2))/2, where ipnullp(1)nulla peak-to-peak value of the first current, Vpnullp(1)nulla peak-to-peak value of a voltage across the light source during the period t1, ipnullp(2)nulla peak-to-peak value of the second current, and Vpnullp(2)nulla peak-to-peak value of a voltage across the light source during the period t2. E2 is defined as (t1nullt2)nullIoffnullVoff, where Ioff and Voff are effective values of the current and voltage of the light source, respectively.
Abstract:
A liquid crystal display device capable of improving display quality by enabling proper execution of receipt and acceptance of image signals through compensation for variation in duty ratios of clock signals as input to liquid crystal driver circuitry, is provided. In a liquid crystal display device comprising a liquid crystal display element and liquid crystal driver circuitry, the liquid crystal driver circuitry is operable to receive an image signal as input thereto for taking it into a bus at the timing of a change of an internal clock signal from a first level to a second level or alternatively its change from the second level to the first level and then select from the image signal as taken or nullacceptednull into the bus a voltage used to drive the liquid crystal display element, wherein the internal clock signal is the clock signal that causes a first level period and a second level period of an external clock signal being input to the liquid crystal driver circuitry to be made identical or equalized by a clock compensation circuit to specified values respectively.
Abstract:
An image displaying apparatus at least including a first structure component, a second structure component, a third structure component and a displaying unit are provided, in which it is characterized that each of the first structure component, the second structure component and the third structure component has a section at which the first structure component, the second structure component and the third structure component are disposed in the order from an inside of the image displaying apparatus on a side face thereof, and each of the first structure component and the third structure component has in a part of the section a fixing portion for being fitted to the second structure component at each of positions thereon approximately equal to each other.
Abstract:
In a liquid crystal display device comprising a substrate which has an organic material film (e.g. a leveling layer, or an alignment film) and a conductive oxide film (e.g. an electrode) covering at least a part of the organic material film both formed on an inner surface thereof facing a liquid crystal layer, the present invention provides the conductive oxide film formed at a temperature being neither higher than a thermal decomposition temperature of the organic material film nor lower than a heat deflection temperature of the organic material film, so as to prevent blebs from foaming from the organic material film and appearing in the liquid crystal layer even after a long term storage of the liquid crystal display device or even external force applied to the liquid crystal display device.