Abstract:
An integrated device with high insulation tolerance is provided. A groove having an inclined side surface is provided between adjacent devices. When a side where an electronic circuit or MEMS device is mounted is a front surface, the groove becomes narrower from the front surface to a back surface because of the inclined surface. A mold material (insulating material) is disposed inside the groove, so that the plurality of devices are mechanically joined together, being electrically insulated from one another. A line member that establishes an electrical conduction between the adjacent devices is formed to lie along the side surface and the bottom surface of the groove. To lead the line out to the backside, the bottom surface of the groove has a hole, so that the line member is exposed to the backside from the hole.
Abstract:
An integrated device with high insulation tolerance is provided. A groove having an inclined side surface is provided between adjacent devices. When a side where an electronic circuit or MEMS device is mounted is a front surface, the groove becomes narrower from the front surface to a back surface because of the inclined surface. A mold material (insulating material) is disposed inside the groove, so that the plurality of devices are mechanically joined together, being electrically insulated from one another. A line member that establishes an electrical conduction between the adjacent devices is formed to lie along the side surface and the bottom surface of the groove. To lead the line out to the backside, the bottom surface of the groove has a hole, so that the line member is exposed to the backside from the hole.
Abstract:
A picture processing device (100) includes: a mask generation unit (110x) which generates a masking picture (110aI) based on an edge in a first picture (101a); a feature point masking unit (111x) which masks extracted feature points with the generated masking picture (110aI); a rotation matrix calculation unit (112) which calculates a positional change between the first picture and a second picture (101a, 101b) using a feature point selected from the feature points as a result of the masking; and a picture correction unit (113) which uses the calculated change.
Abstract:
An image processing device of the present invention includes: a motion amount estimating unit which estimates, using feature points extracted from each of a first picture and a second picture, a motion amount indicating an amount of displacement of the second picture with respect to the first picture, the second picture being captured temporally after the first picture; a determining unit which determines, using the feature points, whether or not correction is made using the motion amount estimated by the motion amount estimating unit; and a picture correcting unit which corrects the displacement of the second picture with respect to the first picture using the motion amount so as to correct the displacement between the pictures, in the case where the determining unit determines that the correction is made using the motion amount.
Abstract:
A gas discharge tube is manufactured by closing an opening of a glass tube by forming a glass layer with outer peripheral shape identical to the outer peripheral shape of the glass tube on an end face of the glass tube. An open end face (opening) of the glass tube is pressure-welded to a dry film containing a low melting point glass powder and a binder resin, and then the glass tube is lifted up to transfer the dry film for closing the opening to the end face of the glass tube. A phosphor support member is inserted into the glass tube from a side opposite to the end face and then an end of the phosphor support member is caused to adhere to the dry film. The binder resin is burnt off, and the dry film is vitrified to produce a low melting point glass layer.
Abstract:
A transmission system, having a plurality of delivery server side routers which communicate with a plurality of delivery servers for delivering a content; and a client side router which communicates with a client device for receiving the content, is configured to include: a database for storing server load states of the plurality of delivery servers, and respective individual link load states for a plurality of delivery paths between the plurality of delivery server side routers and the client side router; and a path control unit for determining a minimum load state delivery path having a minimum load state among the plurality of delivery paths, based on sums of the server load states and the respective individual link load states stored in the database.
Abstract:
This invention is to enable appropriate routing based on transition prediction of network traffic. This routing control method includes: reading out predicted utilization transition data (e.g. utilization rate, or utilized bandwidth) associated with a received connection set-up request from a predicted utilization transition data storage storing said predicted utilization transition data for each resource (e.g. links between routers, or server) in a network in future; and selecting a resource satisfying a predetermined condition based on the read predicted utilization transition data. Thus, by using said predicted utilization transition data, an appropriate resource is identified in accordance with future time transition of the resource utilization rate, for example, and thereby, appropriate routing is possible. For example, when a link that a traffic volume will increase after a predetermined time exists, it is possible to judge that such a link is not used even when there are a lot of available bandwidths now.
Abstract:
A wide area load sharing control system includes a statistic information gathering module obtaining from respective nodes, as statistic information, a traffic state of links connected to the respective nodes in a network, a route determining module determining, based on the obtained statistic information, at least one route for extending a plurality of paths between ingress edge nodes and egress edge nodes that correspond to within a traffic engineering section in the network, and a load sharing determining module determining, based on the obtained statistic information, a ratio at which a traffic should be distributed to respective paths on the determined route. Active modules among the statistic information gathering module, the route determining module and the load sharing determining module are switched over to between the ingress edge nodes and the network control device concentratedly controlling the respective nodes, mutually.
Abstract:
A display device (12) has a display screen, the display screen comprising a plurality of gas discharge tubes (20R, 20G, 20B, . . . 28R, 28G, 28B) disposed side by side. Each of the gas discharge tubes includes a phosphor layer (4) formed therein and also includes a discharge gas contained therein. Each gas discharge tube has a plurality of light-emitting points. Each of the plurality of gas discharge tubes (20R, 20G, 20B, . . . 28R, 28G, 28B) is curved along the longitudinal direction thereof. The display screen is formed by combining the plurality of gas discharge tubes having different magnitudes of curvature.
Abstract:
A motion vector calculation unit 4 calculates inter-frame movement amounts. A masked region specification unit 5 separates the entire edge image of frame feature data into (i) an edge image showing relatively large movement amounts and (ii) an edge image showing relatively small movement amounts. The masked region specification unit 5 then specifies the edge image showing relatively large movement amounts as a region to be masked. This way, a correction parameter is detected from a region other than the masked region. When the correction parameter is a slang angle, a slant correction unit 7 performs slant correction on a frame picture obtained by an image sensor.