Abstract:
Disclosed is an ink cartridge for a printer, comprising a body having an opened surface and a predetermined shape to receive ink therein; a cover coupled with the body to define a desired space; and a chamber instrument comprising a filling chamber having a space for receiving a part of the ink in the body, a discharging chamber connected with the filling chamber, an ink transferring channel for moving the ink received in the filling chamber to the discharging chamber, an air guiding hold for guiding air to an inside of the cartridge, an air suction valve for selectively passing the guided air and a pressure regulating valve for regulating an internal pressure of the body.
Abstract:
Disclosed herein is an ink cartridge refill system for inkjet printers and a method of refilling ink cartridges using the system. The refill system includes a vacuum pump to supply ink from an ink tank into a cylinder and to forcibly draw ink from an ink cartridge, as well as an air compression pump to generate a compression force to inject ink from the cylinder into the ink cartridge through the nozzle of the cartridge. The cylinder is connected at the inlet end thereof to both the air compression pump and the vacuum pump, and is connected at the outlet end to both the ink tank and the ink cartridge. Both a compression pump line and a first vacuum pump line which pass through the cylinder are connected to the nozzle of the cartridge through an ink supply hose. The vacuum pump includes a second vacuum pump line directly connected to the ink cartridge, as is the first vacuum pump line passing through the cylinder. Both the ink supply hose and the second vacuum pump line are connected to the nozzle of the cartridge through a connection unit. The refill system can regulate the inner pressure of a refilled cartridge by removing predetermined small amounts of air and ink from the refilled cartridge, and can completely remove waste ink from the cartridge at the initial stage of a cartridge refill process when necessary.
Abstract:
The present invention relates to a micro coaxial cable with a high bending performance, comprising an inner conductor; an insulating layer configured to surround the inner conductor, and a helical winding conductor configured to surround the insulating layer and having an elongation of 1.5 to 4% and a pitch of 3.0 to 5.0 D.
Abstract:
The present invention relates to an ink recharging system in which the ink can be recharged into a used ink cartridge repeatedly, a bulk ink cartridge used in the system, and a method for recharging the ink into the ink cartridge using them. The ink recharging system for the ink cartridge installed in an inkjet printer comprises a compressor and a positive pressure tank for providing the compression force to supply the ink stored in the quantitative ink supply cylinder to the ink cartridge, a charging cylinder for applying the compression force and the suction force to the quantitative ink supply cylinder, automatic quantitative position control means for measuring the movement displacement of the charging cylinder, a vacuum pump and a negative pressure tank for producing a vacuum in the ink cartridge, and a compressed air supply tube diverged and connected to the inlet and outlet of the charging cylinder from the positive pressure tank via the solenoid valve for air pressure. The present invention provides a recharging system for the ink cartridge and a method for recharging the ink cartridge, in which the remaining air or ink in the recycled ink cartridge can be easily discharged and vacuum degree of the ink cartridge can be precisely controlled by the control means for the quantitative position, to thereby charge the quantitative ink into the recycled ink cartridge rapidly and accurately, and relates to a bulk ink cartridge which can prevent wrong installment with simple identifying members.
Abstract:
Disclosed is an ink cartridge for a printer, comprising a body having an opened surface and a predetermined shape to receive ink therein; a cover coupled with the body to define a desired space; and a chamber instrument comprising a filling chamber having a space for receiving a part of the ink in the body, a discharging chamber connected with the filling chamber, an ink transferring channel for moving the ink received in the filling chamber to the discharging chamber, an air guiding hold for guiding air to an inside of the cartridge, an air suction valve for selectively passing the guided air and a pressure regulating valve for regulating an internal pressure of the body.
Abstract:
A micro coaxial cable includes an inner conductor; an insulation layer having foaming cells and formed to surround the inner conductor; an over-foaming preventing layer formed to surround the insulation layer for the purpose of uniform forming of the foaming cells; a metal shield layer formed to surround the over-foaming preventing layer; and a protective coating layer formed to surround the metal shield layer. The over-foaming preventing layer restrains abnormal growth of foaming cells formed in the insulation layer such that the foaming cells are successively adjacently formed with uniform size. Due to the uniformity of foaming, the dielectric constant of the insulation layer is not locally different but uniform as a whole, thereby capable of improving transmission characteristics. In addition, the micro coaxial cable enables to transmit signals even at a high frequency transmission of GHz range, which was impossible in the prior art.
Abstract:
A micro coaxial cable with a high bending performance, having an inner conductor; an insulating layer configured to surround the inner conductor, and a helical winding conductor configured to surround the insulating layer and having an elongation of 1.5 to 4% and a pitch of 3.0 to 5.0 mm.
Abstract:
A micro coaxial cable includes an inner conductor; an insulation layer having foaming cells and formed to surround the inner conductor; an over-foaming preventing layer formed to surround the insulation layer for the purpose of uniform forming of the foaming cells; a metal shield layer formed to surround the over-foaming preventing layer; and a protective coating layer formed to surround the metal shield layer.
Abstract:
Disclosed is a polypropylene resin composition with flame retardance and abrasion resistance. The polypropylene resin composition according to the present invention includes 20 to 200 parts by weight of an inorganic flame retardant; and 0.1 to 10 parts by weight of at least one additive, based on 100 parts by weight of a base resin comprising 30 to 90% by weight of polypropylene copolymer resin and 10 to 70% by weight of polyolefin alpha copolymer resin. The polypropylene resin composition according to the present invention can be used for industrial cables with potent endurance since it includes an inorganic flame retardant to show flame retardance and it can remove or reduce a whitening phenomenon and show a significantly improved abrasion resistance without deteriorating moldability or mechanical property even when the contents of the composition are varied to enhance abrasion resistance.
Abstract:
The present invention relates to an ink recharging system in which the ink can be recharged into a used ink cartridge repeatedly, a bulk ink cartridge used in the system, and a method for recharging the ink into the ink cartridge using them. The ink recharging system for the ink cartridge installed in an inkjet printer comprises a compressor and a positive pressure tank for providing the compression force to supply the ink stored in the quantitative ink supply cylinder to the ink cartridge, a charging cylinder for applying the compression force and the suction force to the quantitative ink supply cylinder, automatic quantitative position control means for measuring the movement displacement of the charging cylinder, a vacuum pump and a negative pressure tank for producing a vacuum in the ink cartridge, and a compressed air supply tube diverged and connected to the inlet and outlet of the charging cylinder from the positive pressure tank via the solenoid valve for air pressure. The present invention provides a recharging system for the ink cartridge and a method for recharging the ink cartridge, in which the remaining air or ink in the recycled ink cartridge can be easily discharged and vacuum degree of the ink cartridge can be precisely controlled by the control means for the quantitative position, to thereby charge the quantitative ink into the recycled ink cartridge rapidly and accurately, and relates to a bulk ink cartridge which can prevent wrong installment with simple identifying members.