Abstract:
The present invention relates to nucleic acid molecules encoding delta 9 desaturase gene, and expression vectors, plant cells, and transgenic plants expressing delta 9 desaturase nucleic acid. The nucleic acid molecules of the present invention can be used, for example, to decrease delta 9 desaturase activity in plant cells, resulting in decreased unsaturated fatty acid production.
Abstract:
The present invention pertains to the nanoencapsulation of siRNA and other biologics in phospholipid nanosomes for the improved delivery of siRNA and other biologics to targeted diseased human or animal organs and human or animal cells and apparatus and methods for making the same. In embodiments of the present invention, novel siRNAs were designed to down regulate CCR5 and CD4, based on an analysis of all known alternative transcripts for each gene from both human and monkey (Macaca mulatta) genomes. Embodiments of the present invention feature supercritical, critical and near critical fluids. Embodiments of the present invention also pertain to down regulation of CXCR4 receptor and targeting of nanosomes containing specific siRNA sequences to cells expressing those receptors on the cell surface by coating them with specific ligands. These include ligands for the receptors CCR5, CD4 and CXCR4.
Abstract:
The present invention relates to nucleic acid molecules which modulate the synthesis, expression and/or stability of an mRNA encoding one or more receptors of vascular endothelial growth factor.
Abstract:
Hairpin ribozyme lacking a substrate moiety, comprising atleast six bases in helix 2 and able to base-pair with a separate substrate RNA, wherein the said ribozyme comprises one or more bases 3' of helix 3 able to base-pair with the said substrate RNA to form a helix 5 and wherein the said ribozyme can cleave and/or ligate said separate RNA(s) in trans.
Abstract:
The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications associated with insulin response. Specifically, the invention relates to small interfering RNA (siRNA) molecules capable of mediating RNA interference (RNAi) against PTP-1B polypeptide and polynucleotide targets.
Abstract:
A nucleic acid molecule which blocks synthesis and/or expression of an IL-2R encoded RNA, wherein said nucleic acid molecule is used to treat graft rejection, an autoimmune disease, cancer, psoriasis, an allergy or other inflammatory disease.
Abstract:
The present invention pertains to the nanoencapsulation of siRNA and other biologics in phospholipid nanosomes for the improved delivery of siRNA and other biologics to targeted diseased human or animal organs and human or animal cells and apparatus and methods for making the same. In embodiments of the present invention, novel siRNAs were designed to down regulate CCR5 and CD4, based on an analysis of all known alternative transcripts for each gene from both human and monkey (Macaca mulatta) genomes. Embodiments of the present invention feature supercritical, critical and near critical fluids. Embodiments of the present invention also pertain to down regulation of CXCR4 receptor and targeting of nanosomes containing specific siRNA sequences to cells expressing those receptors on the cell surface by coating them with specific ligands. These include ligands for the receptors CCR5, CD4 and CXCR4.
Abstract:
The present invention relates to nucleic acid molecules, including antisense and enzymatic nucleic acid molecules, such as hammerhead ribozymes, DNAzymes, allozymes, aptamers, decoys and siRNA (RNAi), which modulate the expression or function of IKK genes, such as IKK-gamma, IKK-alpha, or IKK-beta, and PKR genes.