Abstract:
A multi-layer tube comprises a metal tube having an outer surface and a zinc layer bonded to the metal tube outer surface, wherein the zinc layer is selected from the group consisting of zinc plating, zinc nickel alloys, zinc cobalt alloys, zinc aluminum alloys, and mixtures thereof. A surface treatment layer is bonded to the zinc layer, wherein the surface treatment layer is selected from the group consisting of a zinc/aluminum/rare earth alloy, phosphate, chromate and mixtures thereof. A first polymeric layer is bonded to the surface treatment layer, wherein the first polymeric layer is selected from the group consisting of a thermoplastic elastomer, an ionomer, a nylon, a fluoropolymer, and mixtures thereof. A second polymeric layer is bonded to the first polymeric layer, wherein the second polymeric layer is selected from the group consisting of a nylon, a thermoplastic elastomer, a fluoropolymer, and mixtures thereof. A process for manufacturing a multi-layer tubing for conveying fluids in a vehicle system comprises the step of extruding multiple layers of a melt-processible thermoplastic to a pretreated metal tube having an external surface with at least a zinc based coating and a sealant coating on top of the zinc based coating.
Abstract:
The present invention is a high pressure quick connector especially for use in connecting brake lines of a vehicle. The connector includes a housing which selectively receives a tube retainer cap. Retaining means such as a garter spring or snap ring allow for a low force insertion of the cap into the housing with an very high pull-off force. The cap is used to trap a tube with a bead upset, and the tube may be removed after the cap is unlocked. A second way of releasing the tube includes the use of a tube retainer plug selectively received in the cap, the upset trapped between the plug and cap. The plug can be removed while the cap is still locked in the housing, releasing the tube. A release tool may be used to unlock the cap from the housing. An insertion indicator ring is used to establish the locking of the cap within the housing. A dust boot prevents contaminants from interfering with the operation of the connector.
Abstract:
A multi-layer tube having a metal tube having an outer surface and a zinc layer bonded to the metal tube outer surface. The zinc layer being selected from the group consisting of zinc plating, zinc nickel alloys, zinc cobalt alloys, zinc aluminum alloys, and mixtures thereof. A surface treatment layer is bonded to the zinc layer, wherein the surface treatment layer is selected from the group consisting of a zinc/aluminum/rare earth alloy, phosphate, chromate and mixtures thereof. A first polymeric layer is bonded to the surface treatment layer, wherein the first polymeric layer is selected from the group consisting of a thermoplastic elastomer, an ionomer, a nylon, a fluoropolymer, and mixtures thereof. A second polymeric layer is bonded to the first polymeric layer, wherein the second polymeric layer is selected from the group consisting of a nylon, a thermoplastic elastomer, a fluoropolymer, and mixtures thereof. The tube also has a continuous interior layer made of non-reactive material which is preferably made of a polymeric material which is substantially non-reactive in the presence of short chain alcohols. The process for manufacturing the multi-layer tubing of the present invention also includes the steps of positioning a length of non-reactive tubing into the interior of unsealed metal tube, sealing the metal tube with the non-reactive tubing contained within and extruding multiple layers of a melt-processible thermoplastic onto the external surface metal tube the external surface can be pretreated with at least a zinc based coating and a sealant coating on top of the zinc based coating.
Abstract:
A multi-layer tube comprises a metal tube having an outer surface and a zinc layer bonded to the metal tube outer surface, wherein the zinc layer is selected from the group consisting of zinc plating, zinc nickel alloys, zinc cobalt alloys, zinc aluminum alloys, and mixtures thereof. A surface treatment layer is bonded to the zinc layer, wherein the surface treatment layer is selected from the group consisting of a zinc/aluminum/rare earth alloy, phosphate, chromate and mixtures thereof. A first polymeric layer is bonded to the surface treatment layer, wherein the first polymeric layer is selected from the group consisting of a thermoplastic elastomer, an ionomer, a nylon, a fluoropolymer, and mixtures thereof. A second polymeric layer is bonded to the first polymeric layer, wherein the second polymeric layer is selected from the group consisting of a nylon, a thermoplastic elastomer, a fluoropolymer, and mixtures thereof. A process for manufacturing a multi-layer tubing for conveying fluids in a vehicle system comprises the step of extruding multiple layers of a melt-processible thermoplastic to a pretreated metal tube having an external surface with at least a zinc based coating and a sealant coating on top of the zinc based coating.
Abstract:
An end fitting closes at least one end of a passageway having an external periphery and an internal periphery to be cast-in-place within a part. A fitting body has at least one elongated, blind-ended aperture formed therein. The aperture is defined at least in part by a first surface having a complimentary shape with respect to the external periphery of the cast-in-place passageway for receiving an end of the passageway disposed extending at least partially therein to close the passageway during casting of the part. The fitting body is composed of material essentially identical to material being used during casting of the part. The fitting body is positionable within a casting mold for forming the part to be cast, such that machining the cast part after casting opens the blind-end of the fitting to allow fluid flow through the passageway cast-in-place within the part. The end fitting may include a shaped aperture, such as a hexagonal shape or oval shape, for receiving a complimentary shaped nut on the conduit or complimentary shaped passageway to provide orientation of the passageway with respect to the fitting when connected thereto.
Abstract:
A multi-layer tube comprises a metal tube having an outer surface and a zinc layer bonded to the metal tube outer surface, wherein the zinc layer is selected from the group consisting of zinc plating, zinc nickel alloys, zinc cobalt alloys, zinc aluminum alloys, and mixtures thereof. A surface treatment layer is bonded to the zinc layer, wherein the surface treatment layer is selected from the group consisting of a zinc/aluminum/rare earth alloy, phosphate, chromate and mixtures thereof. A first polymeric layer is bonded to the surface treatment layer, wherein the first polymeric layer is selected from the group consisting of a thermoplastic elastomer, an ionomer, a nylon, a fluoropolymer, and mixtures thereof. A second polymeric layer is bonded to the first polymeric layer, wherein the second polymeric layer is selected from the group consisting of a nylon, a thermoplastic elastomer, a fluoropolymer, and mixtures thereof. A process for manufacturing a multi-layer tubing for conveying fluids in a vehicle system comprises the step of extruding multiple layers of a melt-processible thermoplastic to a pretreated metal tube having an external surface with at least a zinc based coating and a sealant coating on top of the zinc based coating.
Abstract:
An end fitting closes at least one end of a passageway having an external periphery and an internal periphery to be cast-in-place within a part. A fitting body has at least one elongated, blind-ended aperture formed therein. The aperture is defined at least in part by a first surface having a complimentary shape with respect to the external periphery of the cast-in-place passageway for receiving an end of the passageway disposed extending at least partially therein to close the passageway during casting of the part. The fitting body is composed of material essentially identical to material being used during casting of the part. The fitting body is positionable within a casting mold for forming the part to be cast, such that machining the cast part after casting opens the blind-end of the fitting to allow fluid flow through the passageway cast-in-place within the part. The end fitting may include a shaped aperture, such as a hexagonal shape or oval shape, for receiving a complimentary shaped nut on the conduit or complimentary shaped passageway to provide orientation of the passageway with respect to the fitting when connected thereto.
Abstract:
The present invention is a high pressure quick connector especially for use in connecting brake lines of a vehicle. The connector includes a housing which selectively receives a tube retainer cap. Retaining means such as a garter spring or snap ring allow for a low force insertion of the cap into the housing with an very high pull-off force. The cap is used to trap a tube with a bead upset, and the tube may be removed after the cap is unlocked. A second way of releasing the tube includes the use of a tube retainer plug selectively received in the cap, the upset trapped between the plug and cap. The plug can be removed while the cap is still locked in the housing, releasing the tube. A release tool may be used to unlock the cap from the housing. An insertion indicator ring is used to establish the locking of the cap within the housing. A dust boot prevents contaminants from interfering with the operation of the connector.
Abstract:
A multi-layer tube comprises a metal tube having an outer surface and a zinc layer bonded to the metal tube outer surface, wherein the zinc layer is selected from the group consisting of zinc plating, zinc nickel alloys, zinc cobalt alloys, zinc aluminum alloys, and mixtures thereof. A surface treatment layer is bonded to the zinc layer, wherein the surface treatment layer is selected from the group consisting of a zinc/aluminum/rare earth alloy, phosphate, chromate and mixtures thereof. A first polymeric layer is bonded to the surface treatment layer, wherein the first polymeric layer is selected from the group consisting of a thermoplastic elastomer, an ionomer, a nylon, a fluoropolymer, and mixtures thereof. A second polymeric layer is bonded to the first polymeric layer, wherein the second polymeric layer is selected from the group consisting of a nylon, a thermoplastic elastomer, a fluoropolymer, and mixtures thereof. A process for manufacturing a multi-layer tubing for conveying fluids in a vehicle system comprises the step of extruding multiple layers of a melt-processible thermoplastic to a pretreated metal tube having an external surface with at least a zinc based coating and a sealant coating on top of the zinc based coating.
Abstract:
A multi-layer tube having a metal tube having an outer surface and a zinc layer bonded to the metal tube outer surface. The zinc layer being selected from the group consisting of zinc plating, zinc nickel alloys, zinc cobalt alloys, zinc aluminum alloys, and mixtures thereof. A surface treatment layer is bonded to the zinc layer, wherein the surface treatment layer is selected from the group consisting of a zinc/aluminum/rare earth alloy, phosphate, chromate and mixtures thereof. A first polymeric layer is bonded to the surface treatment layer, wherein the first polymeric layer is selected from the group consisting of a thermoplastic elastomer, an ionomer, a nylon, a fluoropolymer, and mixtures thereof. A second polymeric layer is bonded to the first polymeric layer, wherein the second polymeric layer is selected from the group consisting of a nylon, a thermoplastic elastomer, a fluoropolymer, and mixtures thereof. The tube also has a continuous interior layer made of non-reactive material which is preferably made of a polymeric material which is substantially non-reactive in the presence of short chain alcohols. The process for manufacturing the multi-layer tubing of the present invention also includes the steps of positioning a length of non-reactive tubing into the interior of unsealed metal tube, sealing the metal tube with the non-reactive tubing contained within and extruding multiple layers of a melt-processible thermoplastic onto the external surface metal tube the external surface can be pretreated with at least a zinc based coating and a sealant coating on top of the zinc based coating.