Abstract:
The exhaust from a diesel-fueled internal combustion engine is treated by a lean NOX trap. The maximum temperature used for desulfating the lean NOX trap is kept relatively lower during early life and progressively increased as the trap ages. Designing for adequate late life performance entails excess capacity during early life. The method utilizes the excess capacity available during early life to slow aging of the trap and thereby extend the trap lifetime. The method facilitates meeting durability requirements for diesel-powered vehicles with exhaust aftertreatment.
Abstract:
A lean NOX trap is a diesel exhaust aftertreatment system is selectively denitrated in a manner that addresses unreliability of NOX sensor data. According to one concept, data from a NOX is ignored or given decreased weight in a period immediately following a denitration. According to another concept, denitration is made contingent on both a first and a second criteria being met. The first criteria relates to the amount of NOX stored in the LNT or remaining NOX storage capacity of the LNT. The second criteria relates to the current performance of the exhaust treatment system, or a portion thereof, as determined from one or more measurements of NOX concentration in the exhaust. This reduces premature denitrations and associated unnecessary fuel expenditures resulting from inaccurate NOX concentration data and transient events
Abstract:
One or more parameters for denitration or desulfations of a LNT is varied, whereby the saturation of NOx and/or SOx in the LNT is reduced to a lower level when an operating state makes the LNT otherwise less effective or places a greater demand for conversion efficiency on the LNT. The operating state can relate to whether the LNT is at the limit of its effective operating temperature range, a degree of poisoning, or an engine operating state. Selectively tolerating high degrees of sulfur poisoning or NOx saturation during periods of low exhaust flow allows the efficiency of denitrations and/or desulfations to be increased over a large portion of a vehicle's operating cycle, particularly when the engine uses a CVT. Another concept relates to a power generation system comprising an engine tuned to efficiently operate in a narrow speed range for all levels of power output.
Abstract:
One aspect of the invention relates to a particulate filter useful in treating exhaust from a diesel-power vehicle. The particulate filter comprises filter elements for removing particulate matter and an ammonia SCR catalyst. Ammonia can be produced during regeneration of an NOx adsorbant. The adsorbant can be contained in a separate device upstream of the particulate filter or be incorporated within the particulate filter. Another aspect of the invention relates to a method of cleaning exhaust comprising passing the exhaust over an NOx adsorber to adsorb a portion of NOx from the exhaust; passing the exhaust through a particulate filter to remove particulate matter from the exhaust; and removing a further portion of NOx from the exhaust by reducing it with ammonia over an ammonia SCR catalyst. Preferably, a catalyst contained within the adsorbant provides NO2 for continuously regenerating the particulate filter.
Abstract:
Desulfation methods for an exhaust treatment system having a fuel reformer configured upstream of a LNT. Reductant is injected upstream of the fuel reformer. The reductant reacts within the reformer to generate heat, but the system is configured for some reductant to breakthrough and react in the LNT to generate further heat. This configuration allows the LNT to operate at temperatures higher the than first device and facilitates independent control of the LNT and first device temperatures. An outer loop controls the LNT temperature by issuing instructions to an inner loop that controls the reformer. Typically, the inner loop will pulse the reductant injection rate in order to limit the reformer temperature. The outer loop can pulses the loop on a longer time scale, resulting in two pulse periods. Through timing, a reformate peak from one period is made to overlap a temperature peak from a previous period.
Abstract:
An exhaust aftertreatment system having a NOX absorber-catalyst and an ammonia-SCR reactor. During regenerations, the NOX absorber-catalyst generates ammonia. The ammonia-SCR reactor captures this ammonia and later uses it to reduce NOX. A Venturi is provided in an exhaust conduit connecting the NOX absorber-catalyst to the ammonia-SCR reactor. The Venturi draws sufficient air to keep the ammonia-SCR reactor under lean conditions throughout the NOX absorber-catalyst regenerations. Maintaining lean conditions for the ammonia-SCR reactor in this manner mitigates poisoning of the ammonia-SCR reactor by hydrocarbons slipping from the NOX absorber-catalyst during the regenerations. Mitigating this poisoning improves the performance of the exhaust aftertreatment system and reduce the loss of useful ammonia to oxidation.
Abstract:
Desulfation methods for an exhaust treatment system having a fuel reformer configured upstream of a LNT. Reductant is injected upstream of the fuel reformer. The reductant reacts within the reformer to generate heat, but the system is configured for some reductant to breakthrough and react in the LNT to generate further heat. This configuration allows the LNT to operate at temperatures higher the than first device and facilitates independent control of the LNT and first device temperatures.
Abstract:
An exhaust line fuel injection system and associated methods of operation and control are disclosed. The fuel passes through a regulating valve connected to a pressurized fuel source and an outlet connected to an exhaust system fuel supply line. The exhaust system fuel supply line is connected to a nozzle, which generally comprises a check-valve and is configured to inject the fuel into the exhaust line. Using a pressure measuring device, an indication of the exhaust system fuel supply line pressure is obtained. A controller provides control over the flow regulating valve using feedback from the pressure indication and a predetermined relationship between the flow rate through the nozzle and one of the exhaust system fuel supply line pressure and the pressure drop across the nozzle. The method can be implemented with a single pressure measuring device. The same pressure measurements, especially their frequency spectrum, can be used to detect system faults.
Abstract:
A lean NOX trap is a diesel exhaust aftertreatment system is selectively denitrated in a manner that addresses unreliability of NOX sensor data. According to one concept, data from a NOX is ignored or given decreased weight in a period immediately following a denitration. According to another concept, denitration is made contingent on both a first and a second criteria being met. The first criteria relates to the amount of NOX stored in the LNT or remaining NOX storage capacity of the LNT. The second criteria relates to the current performance of the exhaust treatment system, or a portion thereof, as determined from one or more measurements of NOX concentration in the exhaust. This reduces premature denitrations and associated unnecessary fuel expenditures resulting from inaccurate NOX concentration data and transient events.
Abstract:
A lean NOx trap is a diesel exhaust aftertreatment system is selectively denitrated based on a measure relating to the state and/or the performance of the exhaust aftertreatment system, or a portion thereof comprising the lean NOx trap, reaching a critical value. The critical value is varied according to the demands currently being place on the exhaust aftertreatment system. In one embodiment, the critical value is set based on engine speed-load information. The method regenerates more frequently when exhaust aftertreatment demands are high and less frequently when demands are low. The method improves aftertreatment performance while reducing aftertreatment fuel penalty.