Abstract:
A composition comprising microcapsules, the microcapsules containing both live mammalian ovarian granulosa cells and live mammalian ovarian theca cells, is described. In some embodiments, the granulosa cells and the theca cells are contained in separate microcapsules in the composition; in some embodiments, the granulosa cells and the theca cells are contained together in the same microcapsules in the composition The composition is can be used for estrogen, and optionally also progesterone, delivery, and hence is preferably free or essentially free of oocytes. Methods of using the same and pharmaceutical formulations containing the same are also described.
Abstract:
Provided herein is an apparatus for printing cells which includes an electrospinning device and an inkjet printing device operatively associated therewith. Methods of making a biodegradable scaffold having cells seeded therein are also provided. Methods of forming microparticles containing one or more cells encapsulated by a substrate are also provided, as are methods of forming an array of said microparticles.
Abstract:
The present invention relates to a cell therapy product which is intended for regenerating a sphincter muscle and which contains stem cells derived from amniotic fluid, and more particularly, to a cell therapy product which is intended for regenerating the sphincter vesicae and which contains stem cells derived from amniotic fluid. Also, the cell therapy product of the present invention can be provided in the form of a formulation for administration through injection, said formulation being injected into a hydrogel complex to thereby improve the effects thereof. The composition including stem cells derived from amniotic fluid according to the present invention enables stem cells to be differentiated into muscles in the body of individual suffering from urinary incontinence by directly injecting the composition into the individual, thus effectively controlling urinary incontinence by recovering muscle functions. That is, the stem cells derived from amniotic fluid of the present invention are differentiated into muscles in-situ, and the differentiation into muscles can thus be achieved only with cells in order to recover muscle functions.
Abstract:
The present provides a system and method of maintaining and/or increasing cell viability by downregulating cellular metabolic rate under hypoxic conditions. The present invention also relates to a system and method of prolonging the survival of implanted cells that are under hypoxic condition until host neovascularization is achieved.
Abstract:
Provided are to a freezing medium composition for cryopreserving amniotic fluid-derived stem cells, which has A lower concentration of Me2SO and eliminates fetal bovine serum and at the same time does not induce cryoinjury to fluid-derived stem cells and makes it possible to cryopreserve fluid-derived stem cells for a prolonged time using trehalose, sucrose and catalase, and a method for cryopreserving the same. According to the present invention, AFSCs can be cryopreserved with 1/4 the standard Me2SO concentration with the addition of disaccharides, antioxidants and caspase inhibitors. As a result, the use of Me2SO at low concentrations in cell freezing solutions may support the development of clinical trials of AFSCs.
Abstract:
A method of treating hypoxic tissue such as wound tissue comprises contacting a composition to the hypoxic tissue in a hypoxia-treatment effective amount, the composition comprising a biodegradable polymer and an inorganic peroxide incorporated into the polymer.
Abstract:
Provided herein are isolated populations of kidney cells harvested from differentiated cells of the kidney, wherein cells have been expanded in vitro. The kidney cells may include peritubular interstitial cells of the kidney, and preferably produce erythropoietin (EPO). The kidney cells may also be selected based upon EPO production. Methods of producing an isolated population of EPO producing cells are also provided, and methods of treating a kidney disease resulting in decreased EPO production in a patient in need thereof are provided, including administering the population to the patient, whereby the cells produce EPO in vivo.
Abstract:
Provided herein are anisotropic muscle implants that have a biodegradable scaffold comprising a plurality of fibers oriented along a longitudinal axis. The implants may include mammalian muscle cells seeded and/or fused into myotubes on the scaffold. Methods of forming the muscle implants are provided, as are methods of treating a subject in need of skeletal muscle reconstruction.
Abstract:
Provided herein are implantable or insertable biomedical devices comprising a substrate and a collagen inhibitor on or in said substrate, and methods of treatment using the same. In some embodiments, the device is an absorbable esophageal or tracheal stent. In some embodiments, the device is a vascular stent. Wound closure devices are also provided herein, including a substrate and a collagen inhibitor on or in the substrate. Also provided are surgical packings, including a substrate and a collagen inhibitor on or in the substrate. A barrier material for preventing adhesions in a subject is further provided, including a preformed or in situ formable barrier substrate and a collagen inhibitor on or in the substrate. An ointment comprising a collagen inhibitor is further provided. Kits comprising the coated substrates are also provided.
Abstract:
Provided herein are anisotropic muscle implants that have a biodegradable scaffold comprising a plurality of fibers oriented along a longitudinal axis. The implants may include mammalian muscle cells seeded and/or fused into myotubes on the scaffold. Methods of forming the muscle implants are provided, as are methods of treating a subject in need of skeletal muscle reconstruction.