Abstract:
A fiber optic microseismic sensing system is provided. The system includes a plurality of nodes, each of the nodes including a surface portion, an underground portion, and an optical cable extending between the surface portion and the underground portion. The surface portion includes (1) an optical source for transmitting an optical signal along the optical cable to the underground portion, and (2) an optical receiver for receiving a return optical signal propagating along the optical cable from the underground portion. The underground portion includes at least one transducer, each of the at least one transducer including (1) a fixed portion configured to be secured to a body of interest, (2) a moveable portion having a range of motion with respect to the fixed portion, (3) a spring positioned between the fixed portion and the moveable portion, and (4) a mass engaged with the moveable portion. The optical cable includes a length of fiber wound between the fixed portion and the moveable portion of each of the at least one transducer, the length of fiber spanning the spring. In one disclosed aspect of the transducer, the mass envelopes the moveable portion.
Abstract:
A personnel monitoring system. The personnel monitoring system includes a host node having an optical source for generating optical signals, and an optical receiver. The personnel monitoring system also includes a plurality of fiber optic sensors for converting at least one of vibrational and acoustical energy to optical intensity information, each of the fiber optic sensors having: (1) at least one length of optical fiber configured to sense at least one of vibrational and acoustical energy; (2) a reflector at an end of the at least one length of optical fiber; and (3) a field node for receiving optical signals from the host node, the field node transmitting optical signals along the at least one length of optical fiber, receiving optical signals back from the at least one length of optical fiber, and transmitting optical signals to the optical receiver of the host node.
Abstract:
A light powered communications system. The light powered communications system includes an audio control center having at least one optical source and at least one optical receiver. The light powered communications system also includes a plurality of optically powered remote communication systems located remote from the audio control center, each of the optically powered remote communication systems being configured to receive an optical signal from the audio control center. The light powered communication system also includes at least one length of fiber optic cable between the audio control center and each of the optically powered remote communication systems.
Abstract:
A fiber optic microseismic sensing system is provided. The system includes a plurality of nodes, each of the nodes including a surface portion, an underground portion, and an optical cable extending between the surface portion and the underground portion. The surface portion includes (1) an optical source for transmitting an optical signal along the optical cable to the underground portion, and (2) an optical receiver for receiving a return optical signal propagating along the optical cable from the underground portion. The underground portion includes at least one transducer, each of the at least one transducer including (1) a fixed portion configured to be secured to a body of interest, (2) a moveable portion having a range of motion with respect to the fixed portion, (3) a spring positioned between the fixed portion and the moveable portion, and (4) a mass engaged with the moveable portion. The optical cable includes a length of fiber wound between the fixed portion and the moveable portion of each of the at least one transducer, the length of fiber spanning the spring. In one disclosed aspect of the transducer, the mass envelopes the moveable portion.
Abstract:
A light powered communications system. The light powered communications system includes an audio control center having at least one optical source and at least one optical receiver. The light powered communications system also includes a plurality of optically powered remote communication systems located remote from the audio control center, each of the optically powered remote communication systems being configured to receive an optical signal from the audio control center. The light powered communication system also includes at least one length of fiber optic cable between the audio control center and each of the optically powered remote communication systems.
Abstract:
A fiber optic transducer is provided. The fiber optic transducer includes a fixed portion configured to be secured to a body of interest, a moveable portion having a range of motion with respect to the fixed portion, a spring positioned between the fixed portion and the moveable portion, and a length of fiber wound between the fixed portion and the moveable portion. The length of fiber spans the spring. The fiber optic transducer also includes a mass engaged with the moveable portion. In one disclosed aspect of the transducer, the mass envelopes the moveable portion.
Abstract:
A fiber optic acoustic sensor system. The fiber optic acoustic sensor system includes an optical source, and a fiber optic acoustic sensor array configured to receive an optical signal from the optical source. The fiber optic acoustic sensor array includes a core, a first polymer layer disposed on the core, an optical fiber wound around the first polymer layer, and a second polymer layer disposed on the first polymer layer such that the optical fiber is between the first polymer layer and the second polymer layer.
Abstract:
A fiber optic acoustic sensor system. The fiber optic acoustic sensor system includes an optical source, and a fiber optic acoustic sensor array configured to receive an optical signal from the optical source. The fiber optic acoustic sensor array includes a core, a first polymer layer disposed on the core, an optical fiber wound around the first polymer layer, and a second polymer layer disposed on the first polymer layer such that the optical fiber is between the first polymer layer and the second polymer layer.
Abstract:
A leak detection system for a wellbore. The leak detection system includes: (1) at least one sensor configured to be positioned outside of a casing of the wellbore; (2) an interrogation system for sending signals to, and receiving signals from, the at least one sensor; and (3) an optical lead cable disposed between the interrogation system and the at least one sensor. A method of detecting a fluid leak in a wellbore is also disclosed.
Abstract:
A sensing system configured for use in a borehole. The sensing system includes a body portion and a clamp arm engaged with the body portion. The clamp arm is configured to move between a retracted position and an extended position. The sensing system also includes an energy storage element engaged with the body portion. The energy storage element provides energy to move the clamp arm from the retracted position to the extended position. A method of using the sensing system is also provided.