Abstract:
A method and apparatus for the delignification of cellulosic fiber material to minimize the amount of reject material in the final pulp produced. The fiber material is digested, washed, oxygen delignified, and passed through a screening stage to provide a main pulp stream, and a reject stream from the separation stage. The flow and consistency of the separated reject material is determined, the reject material is refined, and sufficient chemical is added to the separated reject material, based upon the flow and consistency thereof, so that subsequent delignification of the reject material may be effected. This may be accomplished either by passing the reject material through a separate oxygen delignification stage and then returning it to the main pulp stream, or adding caustic to it and soaking it in a soak tank for predetermined period of time, and then returning it to the main pulp stream before the oxygen delignification stage therein.
Abstract:
A process for continuously digesting cellulosic fibrous material wherein the degree of delignification of the cellulosic fibrous material in the digestion zone is continuously determined and monitored by determining the exothermic heat of the delignification reaction taking place in the digester. The exothermic heat of the delignification reaction is determined by measurements of the temperature rise occurring in the delignification zone and the heat capacity of the cellulosic material and digesting liquor.
Abstract:
The problems of non-uniform treatment of paper pulp that may be caused by differential flow velocities within a vessel, channeling, and/or disruption of the pulp flow, are substantially eliminated by providing a non-circular cross-section substantially atmospheric pressure vessel with at least one screen surface, and typically a liquid introducing device. The vessel, screen surface, and liquid introducing device are constructed and positioned with respect to each other so that during the treatment of a pulp slurry the slurry has substantially uniform width in a treatment zone, and there is substantially uniform resistance to the flow of slurry over the screen surface over any particular cross-section of the vessel in the treatment zone, and its consistency varies less than 6% in the treatment zone (e.g. between 8-14%). The screen surface may comprise substantially vertical screening portions vertically spaced by non-screening portions, and the vessel wall may bulge out at the location of the non-screening portions so as to provide a slurry width at the bulges at least five percent wider than at the screening portions. The vessel may have a substantially race track shape in cross-section at the treatment zone, and the slurry width may form an annulus in the vessel, the annulus being substantially uninterrupted in the treatment zone (there being no arms or like structures which disrupt the flow). The screen surface may be rotated 5-30°, or oscillated or vibrated horizontally (transverse to pulp movement) to minimize plugging.
Abstract:
Dense, tramp material, is efficiently separated in a comminuted cellulosic fibrous material feed system, for example in a chemical cellulose digester feed system, in a simple but effective matter. By merely utilizing a generally vertical conduit and a slurry flow within it (which may be augmented by high speed liquid introduction), that is caused to turn in a radiused path, centrifugal force allows separation of the tramp material into a cavity beneath the radius transition without requiring any mechanical element to engage the slurry. Appropriate purges, baffles, and discharge mechanisms may be provided. Alternatively, a tramp material separator may be built into an otherwise conventional metering screw in a digester feed system, or one or more centrifugal separators can be provided downstream of the slurry pump in a chip slurry transport system or digester feed system.
Abstract:
An apparatus and method for the displacement impregnation of cellulosic chips material with digesting liquid. Cellulosic chips material and liquid are fed from a source to a high pressure transfer valve whereat the pressure of the chips and liquid is boosted. The chips are fed from the high pressure transfer valve through a feed system to the topmost portion of a vertical treatment vessel, the vessel having a topmost portion and an impregnation zone in an upper portion thereof below the topmost portion. A countercurrent flow of digesting liquid in the vessel impregnation zone is established to impregnate the chips material with digesting liquid, and displace the water and minerals therefrom, and liquid withdrawn from the top of the treatment vessel is withdrawn into the feed system. The withdrawals insure that essentially no free water enters the impregnation zone. A chips plug is established at the vessel top through which all withdrawn liquid must pass. Digesting liquid may be supplied to an end portion of the high pressure treatment valve for maintaining the pH of liquid around the high pressure transfer valve at 8 or above.
Abstract:
A process for providing pressurized, pulverized coal for use in combustion or gasifying of coal by the fluidized bed or suspended particle combustion principles which comprises the steps of introducing lump coal, of stoker size to run of mine size, into a low energy liquid circulation stream; transferring the lump coal to a high energy, high pressure, liquid circulation stream; separating the lump coal from the high energy liquid circulation stream by lifting the coal through a free liquid surface, said high energy liquid draining from the coal by gravity; directing the coal by gravity transfer to a continuous mechanical dryer for removal of surface liquid; gravity transfer to a coal crusher for major size reduction; gravity transfer to a coal pulverizer for size reduction necessary for the gasification processes; transfer of pulverized coal by gas circulation from the pulverizer to a cyclone separator, said circulating gas used in the pulverizer for coal particle classifying; and final injection of the pulverized coal to a fluidized bed or suspended flow coal gasifier or any pressurized combustion chamber, and apparatus for carrying out the process comprising a combination of known components.
Abstract:
The problems of non-uniform treatment of paper pulp that may be caused by differential flow velocities within a vessel, channeling, and/or disruption of the pulp flow, are substantially eliminated by providing a non-circular cross-section substantially atmospheric pressure vessel with at least one screen surface, and typically a liquid introducing device. The vessel, screen surface, and liquid introducing device are constructed and positioned with respect to each other so that during the treatment of a pulp slurry the slurry has substantially uniform width in a treatment zone, and there is substantially uniform resistance to the flow of slurry over the screen surface over any particular cross-section of the vessel in the treatment zone, and its consistency varies less than 6% in the treatment zone (e.g. between 8-14%). The screen surface may comprise substantially vertical screening portions vertically spaced by non-screening portions, and the vessel wall may bulge out at the location of the non-screening portions so as to provide a slurry width at the bulges at least five percent wider than at the screening portions. The vessel may have a substantially race track shape in cross-section at the treatment zone, and the slurry width may form an annulus in the vessel, the annulus being substantially uninterrupted in the treatment zone (there being no arms or like structures which disrupt the flow). The screen surface may be rotated 5-30°, or oscillated or vibrated horizontally (transverse to pulp movement) to minimize plugging.
Abstract:
Dense, tramp material, is efficiently separated in a comminuted cellulosic fibrous material feed system, for example in a chemical cellulose digester feed system, in a simple but effective matter. By merely utilizing a generally vertical conduit and a slurry flow within it (which may be augmented by high speed liquid introduction), that is caused to turn in a radiused path, centrifugal force allows separation of the tramp material into a cavity beneath the radius transition without requiring any mechanical element to engage the slurry. Appropriate purges, baffles, and discharge mechanisms may be provided. Alternatively, a tramp material separator may be built into an otherwise conventional metering screw in a digester feed system, or one or more centrifugal separators can be provided downstream of the slurry pump in a chip slurry transport system or digester feed system.
Abstract:
A method and apparatus for the treatment of fiber material by oxygen bleaching. Digested cellulosic fiber material is treated with oxygen to reduce the Kappa number thereof further to about 15 or below. The reaction products are removed immediately after formation, and during the oxygen bleaching process. The fiber material is at a first consistency of about 8 to 15% consistency, and treatment with oxygen is accomplished by mixing the pulp with O.sub.2, NaOH solution, and water to thereby form an integral mixture of pulp with oxygen at a second consistency, thickening the integral mixture to return it to generally its first consistency, and repeating the mixing and thickening until pulp of a desired Kappa number (15 or below) is reached. The pulp is then washed and may be subsequently treated to reduce the Kappa number thereof to any desired value. A thickener is used which can thicken pulp at superatomspheric pressures and at a temperature greater than 100.degree. C.
Abstract:
A process for continuously monitoring and controlling a continuous process for digestion of cellulose utilizing a computer which is programmed to determine (1) the mass of wood being fed to the digester from measurements of the density of the wood slurry feed, the density of the liquid and the total flow of slurry, (2) the mass of wood being withdrawn from the digester from measurements of the density of the pulp slurry, the density of the liquor and the total flow of slurry, (3) the correct amount of fresh digester liquor to be added concurrently with the wood feed and (4) amount of water wash and makeup digester liquor to be fed to the reactor. The computer can also be programmed to control the temperature in the reaction zone of the digester.