Abstract:
A system and method is disclosed that enables the display of permits and/or permit information related to a specific location, collection of permitting data onsite, comparison of the onsite data to permitted constraints, and reporting the results of the inspection, as well as sending immediate notifications, as appropriate, to decision makers.
Abstract:
A system and method for monitoring and verifying athlete attendance in a classroom is disclosed. An exemplary embodiment defines a GPS-based fence in association with a classroom as well as defines a class start time and a class end time. GPS coordinates associated with a portable computing device (“PCD”) associated with a given athlete are received and determined to be within a range of coordinates associated with the fence. Also, a time associated with the receiving of the GPS coordinates is determined to be within a window of time comprising the class start time. Subsequently, a picture of a user is captured with a camera of the PCD. Next, from the picture the user is verified to be the given athlete. Finally, the given athlete is marked as “present” within the class.
Abstract:
Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
Abstract:
Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s). Then, the method continues by assessing the accuracy of the pulse oximetry reading from the first light detector relative to the pulse oximetry reading from the second light detector.
Abstract:
Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary method for CTM begins by monitoring an output signal from an accelerometer. The accelerometer output signal may indicate acceleration and deceleration of a body part of a user, such as the user's wrist. Based on the accelerometer output signal, it may be determined that the body part of the user has decelerated to a minimum, e.g., substantially zero. With a determination that the body part has decelerated to the minimum, e.g., substantially zero, or has not accelerated beyond the minimum, e.g., substantially zero, the method may determine a reading from a pulse oximeter associated with the accelerometer. Advantageously, the pulse oximetry reading, or a reading from other sensors associated with the accelerometer, may be optimally accurate as motion artifact may be minimized. The pulse oximetry reading may be recorded for later query and/or rendered for the benefit of the user.
Abstract:
An apparatus that includes a plasma treatment device operable to produce a plasma treated surface on a part and a dispensing module and operable to dispense an adhesive/sealant onto the plasma treated surface.
Abstract:
The present invention relates to an integrally bladed rotor for use in a gas turbine engine. The integrally bladed rotor comprises a plurality of pairs of airfoil blades. Each pair of blades has a spar which extends from a first tip of a first one of the airfoil blades in the pair to a second tip of a second one of the airfoil blades in the pair. The rotor further comprises an outer shroud integrally joined to the first and second tips in each pair of airfoil blades and an inner diameter hub.
Abstract:
First and second alternating signals at a central office are applied to a telephone subscriber's lines. The level of the second signal current is used to control the level of the first signal. The nonlinear impedance vs. voltage characteristic of the subscriber's telephone in an off-hook state causes harmonics of the first signal to be generated. Harmonics so generated are detected at the central office to indicate the presence of a receiver-off-hook telephone.
Abstract:
A socket for mating with the eyelet of a hot line clamp, an eye nut, an eye bolt, and a wing nut, the socket defining two slots for straddling and axially-rotating a bolt of the hot line clamp to tighten or loosen the hotline clamp.
Abstract:
Various embodiments of methods and systems for continuous transdermal monitoring (“CTM”) are disclosed. One exemplary embodiment of a continuous transdermal monitoring system comprises a sensor package. The sensor package may include a pulse oximetry sensor having a plurality of light detectors arranged as an array. One exemplary method for continuous transdermal monitoring begins by positioning a pulse oximetry sensor system, similar to the system described immediately above, adjacent to a target tissue segment. Then, the method continues by detecting a light reflected by the target tissue segment. Then, the method continues by transmitting a pulse oximetry reading(s), based at least in part on the light reflected by the target tissue segment, of the target tissue segment. Then, the method continues by analyzing the pulse oximetry reading(s). Then, the method continues by assessing the accuracy of the pulse oximetry reading from the first light detector relative to the pulse oximetry reading from the second light detector.