Abstract:
A phased-array antenna panel has front end modules mounted on a Printed Circuit Board (PCB). Several phased-array processing die, transform phase and gain according to a register array in an RFIC on the PCB. The register array are grouped into a local register group and a global register group. Each set of local registers control an individual antenna element and a global register group controls overall RFIC function. The apparatus elaborates phase shift weights into a submodule of a phased-array antenna system. Each submodule determines its own base phase shift weight per its unique location and configuration to accelerate antenna beam direction changes.
Abstract:
An array antenna system consists of layered construct of subarrays. Each beam pointing angle requires an antenna weight vector (AWV). A circuit tracks the changing orientation of a beam within a much larger virtual array of antenna weights. A row or column of a local RAM may be determined to be least likely to be read next and is overwritten with antenna weights more likely to be read next. An address translation circuit represents the RAM as a barrel. An adaptively adjusted antenna weight method optimizes received signal power. A beam splitting method provides a mirror beam pointing direction by wrapping around a look ahead table of antenna weight vectors when an antenna is itself gyrating or when a remote transceiver is anticipated to transit the horizon.
Abstract:
An apparatus substantially updates all the phase shifter values of a phased array antenna by using “global write” to update these parameters to all phased-array transformation circuits simultaneously via a serial bus. Antenna elements, each controlled by a phased-array transformation circuit, are individually configured to transform phase and gain according to a register array. The register array has a local register group and a central register group, the local registers physically placed close in proximity to RF chains which each correspond to an element of array antenna, whereby each set of local registers control an individual antenna element and a central register controlling overall beam steering function. The apparatus is configured to efficiently elaborate phase shift weights into a submodule of a phase array antenna system with low noise and bandwidth.
Abstract:
A solenoid valve includes a housing including a channel, a single-acting through hole, a double-acting through hole, a spring biased spool in the channel, a lateral outlet communicating with the double-acting through hole, and a hole element passing through an edge of the channel to communicate with both the double-acting through hole and the channel; a switch on the housing and including an axial tunnel, a shaft in the tunnel, a lateral single-acting hole communicating with the tunnel, a double-acting hole communicating with the tunnel, and a linking hole perpendicular to the tunnel but not communicating therewith; a pilot valve on the switch; a base at a bottom of the housing, and a spring biased check valve at a lower opening of the housing and the base, the check valve communicating with the single-acting through hole.
Abstract:
A method of operation for a hierarchically elaborated phased-array antenna. Within a plurality of front end modules a phased-array processing die individually transforms phase and gain according to a register array. The register array in each RFIC is grouped into a local register group and a global register group, the local registers physically placed close in proximity to RF chains which each correspond to an element of array antenna, whereby each set of local registers control an individual antenna element and a global register controlling overall RFIC function. The method efficiently elaborates phase shift weights into a submodule of a phase array antenna system. Within each subarray phase control submodule the method recursively elaborates weights to control phase shifters. The method receives and transforms pairs of major operators and minor operators. The method distributes to each submodule determining its own base phase shift weight per its unique configuration.
Abstract:
Methods and apparatuses for implementing a system cache within a memory controller. Multiple requesting agents may allocate cache lines in the system cache, and each line allocated in the system cache may be associated with a specific group ID. Also, each line may have a corresponding sticky state which indicates if the line should be retained in the cache. The sticky state is determined by an allocation hint provided by the requesting agent. When a cache line is allocated with the sticky state, the line will not be replaced by other cache lines fetched by any other group IDs.
Abstract:
Disclosed are the ERK inhibitors of Formula (I): (Formula (I)) and the pharmaceutically acceptable salts thereof. All substitutents are as defined herein. Also disclosed are methods of treating cancer using the compounds of Formula (I).
Abstract:
The present invention provides a system and method for providing a personalized platform for accessing internet applications. According to one embodiment of the invention, a social network provider receives a request for installation of an application from a user of the social network, installs the application at multiple points in the user's social network environment, and personalizes interfaces with the application at these integration points based on information about the user available from the social network. The present invention enables applications to be integrated in the social network environment at multiple integration points and to be personalized for and configured by the user.
Abstract:
An apparatus substantially updates all the phase shifter values of a phased array antenna by using “global write” to update these parameters to all phased-array transformation circuits simultaneously via a serial bus. Antenna elements, each controlled by a phased-array transformation circuit, are individually configured to transform phase and gain according to a register array. The register array has a local register group and a central register group, the local registers physically placed close in proximity to RF chains which each correspond to an element of array antenna, whereby each set of local registers control an individual antenna element and a central register controlling overall beam steering function. The apparatus is configured to efficiently elaborate phase shift weights into a submodule of a phase array antenna system with low noise and bandwidth.