Abstract:
This invention relates to a method of measuring a rheological property of a composite filled with particles, and evaluation equipment, in which in situ measurement is performed of the rheological property of a composite filled with particles obtained by mixing a particulate material as raw material with a liquid material, in a condition with the original material structure maintained, without destroying the material by applying external force such as shearing force thereto, comprising a step of measuring the coagulation structure of the particulate material within the composite filled with particles as an anisotropy signal, and a step of employing the amount of this anisotropy as an index of the rheological property value of the composite.
Abstract:
The present invention provides a monolayer sheet structure of primary hepatocytes that could not be formed by conventional cell layer formation technology, along with a simple method of forming such a monolayer sheet structure, and this invention is a monolayer sheet structure formed as a confluent monolayer of primary hepatocytes cultured on a culture substrate, said monolayer sheet structure is formed by treating the hepatocytes with a protein-phosphorylation inhibitor having an indolo null2,3-anull carbazole or other similar structure in the monolayer formation stage.
Abstract:
This invention relates to a method of measuring the internal structure (packing structure or dispersion condition of particulate material) of a composite filled with particles having an irregular matrix by observations based on its optical anisotropy, in which the internal structure (packing structure or dispersion condition of particulate material) of the composite obtained by mixing particulate material as raw material with a liquid material is made visible by utilizing the photoelasticity based on local rearrangement of liquid material molecules or difference of refractive indices of the particulate material and liquid material, and the structure thereof are observed, and an evaluation device using this principle of measurement.
Abstract:
The present invention relates to a silicon carbide-boron nitride composite material, which synthesised according to an in-situ chemical reaction between silicon nitride, boron carbide and carbon, and which contains fine boron nitride particles dispersed in a silicon carbide matrix, wherein aforementioned composite material is obtained by molding a powder mixture containing each of the components required in the in-situ reaction and sintering the mixture.
Abstract:
The present invention relates to a silicon carbide-boron nitride composite material, which synthesised according to an in-situ chemical reaction between silicon nitride, boron carbide and carbon, and which contains fine boron nitride particles dispersed in a silicon carbide matrix, wherein aforementioned composite material is obtained by molding a powder mixture containing each of the components required in the in-situ reaction and sintering the mixture.
Abstract:
A surface-type light amplifier device has an active layer (13) of a light amplification section (11) sandwiched between an n-type semiconductor cladding layer (12) that is an n-type semiconductor layer and a p-type semiconductor multilayer reflecting mirror (14). The light amplification section is attached to a transparent substrate (21) on the side of the n-type semiconductor cladding layer. A plurality of divided electrodes (16) form electrical continuity relative to the p-type semiconductor multilayer reflecting mirror via a p-type cap layer (15) provided on the reflecting mirror. An electrode (18) forming electrical continuity relative to the n-type semiconductor cladding layer is connected to a wiring conductor (20) provided on the surface of the transparent substrate. The device enables amplification of a single, uniform, large-diameter light beam and oscillation of a laser.
Abstract:
The present invention provides liquid culture media for human or animal cells, and the present invention relates to culture media for the low-serum or serum-free culture of human or animal cells, which contains antithrombin III purified from human, bovine, or other animal serum, or antithrombin III derived from recombinant bacteria or cells containing the full length of the antithrombin III gene.
Abstract:
This invention relates to method for improving selectivity in liquid phase chemical reactions by flowing a reaction solution through a solution reaction column packed with particles having a multiplicity of nanometer-order pores, wherein the chemical reaction solution containing molecules to be reacted is flowed through mesopores having diameter on the order of several nanometers and length on the order of several ten nanometers, while simultaneously subjected to activating of the reaction thereof with reaction-initiating/accelerating means during the process; and a solution flow reaction system therefor.