Abstract:
The present invention relates to a metal catalyst composition for producing furfural derivatives from raw materials of lignocellulosic biomass, and method for producing furfural derivatives using the composition. The present invention comprises ruthenium chloride (RuCl3) and chromium chloride (CrCl2). The chromium chloride (CCl2) is from 300 to 500 parts by weight on the basis of 100 parts by weight of the ruthenium chloride (RuCl3). Unlike conventional furfural derivatives producing process that should go through multi step processes such as pre-process, saccharification process, etc, the present invention has an advantage of producing furfural derivatives from lignocellulosic raw material only through simple reaction process in one reaction apparatus by mixing various kinds of metal catalyst at an optimum ratio.
Abstract:
The present invention relates to a furan-based curable compound derived from carbohydrate-based biomass, to a solvent-free curable composition, and to a method for preparing thereof, wherein the furan-based curable compound derived from biomass according to the present invention includes two epoxide functional groups bonded to at least one furan-based compound. The present invention may provide an environmentally friendly next-generation curable compound comprising a novel furan-based compound derived from biomass, which may be substituted for curable materials derived from oil resources, as a basic backbone, as well as a composition containing the same. According to the present invention, a curable material, which has a low contraction ratio during curing as compared to conventional radical-type curing materials, may be obtained, and a compound applied to the novel curing material may be prepared with a combination of excellent efficiency and cost-effectiveness.
Abstract:
The present invention relates to a method for producing a furan-based compound using an ion exchange resin in the presence of an organic solvent. In the method for producing a furan-based compound according to the present invention, a furan-based compound is made from an aldose-type hexose compound in the presence of an organic solvent by using an anion exchange resin and a cation exchange resin. Thus, the aldose-type hexose compound obtained from biomass by simultaneously or consecutively using the anion/cation exchange resins as catalysts can be made into 5-hydroxymethyl-2-furfural (HMF) or alkyl ether derivatives thereof such as 5-alkoxymethyl-2-furfural (AMF) without using an expensive reagent. Also, since the selection of an organic solvent is not limitative and a heterogeneous catalyst can be used, separation and purification is easy and chemically stable AMF can be directly obtained. Further, the conversion efficiency of the aldose-type hexose compound is excellent, and the hexose compound can be used at a high concentration.
Abstract:
Disclosed is a method of preparing a petroleum-alternative bio fuel material such as 5-hydroxymethyl-2-furfural (HMF), 5-alkoxymethyl-2-furfural, levulinic acid alkil ester, etc. through a single process without saccharification, using a catalyst conversion reaction, from galactan that can be massively supplied at low costs and extracted from macroalgae of marine reusable resources.Thus, the macroalgae of the marine biomass resources is used so that a carbon source can be more easily extracted than that of a lignocellulosic biomass resource without a problem of having an effect on grain price like a crop-based biomass.
Abstract:
This invention relates to a method of, in an eco-friendly manner, preparing a furfuranol-based compound and a 2-furancarboxylic acid-based compound using an ionic liquid as a reaction solvent, which includes reacting a furfural-based compound with a hydroxide of an alkali metal or an alkaline earth metal using an ionic liquid as the solvent, thus obtaining a furfuranol-based compound and a 2-furancarboxylic acid-based compound, and in which water is not used as the reaction solvent, thus preventing the generation of reaction wastewater, and the ionic liquid used as the solvent can be easily recovered and reused.
Abstract:
The present invention relates to a metal catalyst composition for producing furfural derivatives from raw materials of lignocellulosic biomass, and method for producing furfural derivatives using the composition. The present invention comprises ruthenium chloride (RuCl3) and chromium chloride (CrCl2). The chromium chloride (CrCl2) is from 300 to 500 parts by weight on the basis of 100 parts by weight of the ruthenium chloride (RuCl3). Unlike conventional furfural derivatives producing process that should go through multi step processes such as pre-process, saccharification process, etc, the present invention has an advantage of producing furfural derivatives from lignocellulosic raw material only through simple reaction process in one reaction apparatus by mixing various kinds of metal catalyst at an optimum ratio.
Abstract:
Provided herein is a photocurable dianhydrohexanehexol derivative, a method preparing the same, and a composition including the same, for example, to a photocurable compound derived from environmentally friendly biomass, the compound having a structure where a 2-hydroxypropyl methacrylate (HPM) functional group prepared by reacting a biomass derived dianhydrohexanehexol (1,4:3,6-dianhydro-d-hexane-1,2,3,4,5,6-hexol, DHH) compound under an optimal reaction condition is combined, a preparing method thereof, and a photocurable composition comprising the photocurable compound.
Abstract:
The present invention relates to a furan-based curable compound derived from carbohydrate-based biomass, to a solvent-free curable composition, and to a method for preparing thereof, wherein the furan-based curable compound derived from biomass according to the present invention includes two epoxide functional groups bonded to at least one furan-based compound. The present invention may provide an environmentally friendly next-generation curable compound comprising a novel furan-based compound derived from biomass, which may be substituted for curable materials derived from oil resources, as a basic backbone, as well as a composition containing the same. According to the present invention, a curable material, which has a low contraction ratio during curing as compared to conventional radical-type curing materials, may be obtained, and a compound applied to the novel curing material may be prepared with a combination of excellent efficiency and cost-effectiveness.
Abstract:
This invention relates to a method of, in an eco-friendly manner, preparing a furfuranol-based compound and a 2-furancarboxylic acid-based compound using an ionic liquid as a reaction solvent, which includes reacting a furfural-based compound with a hydroxide of an alkali metal or an alkaline earth metal using an ionic liquid as the solvent, thus obtaining a furfuranol-based compound and a 2-furancarboxylic acid-based compound, and in which water is not used as the reaction solvent, thus preventing the generation of reaction wastewater, and the ionic liquid used as the solvent can be easily recovered and reused.
Abstract:
The present invention relates to a method for producing a furan-based compound using an ion exchange resin in the presence of an organic solvent. In the method for producing a furan-based compound according to the present invention, a furan-based compound is made from an aldose-type hexose compound in the presence of an organic solvent by using an anion exchange resin and a cation exchange resin. Thus, the aldose-type hexose compound obtained from biomass by simultaneously or consecutively using the anion/cation exchange resins as catalysts can be made into 5-hydroxymethyl-2-furfural (HMF) or alkyl ether derivatives thereof such as 5-alkoxymethyl-2-furfural (AMF) without using an expensive reagent. Also, since the selection of an organic solvent is not limitative and a heterogeneous catalyst can be used, separation and purification is easy and chemically stable AMF can be directly obtained. Further, the conversion efficiency of the aldose-type hexose compound is excellent, and the hexose compound can be used at a high concentration.