Abstract:
Biological nutrient removal (BNR) in wastewater treatment to remove carbonaceous substrates, nutrients and phosphorus, has recently become increasingly popular worldwide due to increasingly stringent regulations. Biological fluidized bed (BFB) technology, which could be potentially used for BNR processes, can provide some advantages such as high efficiency and compact structure. This present invention incorporates the fixed-film biological fluidized bed technology with the biological nutrient removal in a twin liquid-solid fluidized bed, which has achieved the simultaneous elimination of organic carbon, nitrogen and phosphorus, in a very efficient manner and with very compact space requirements. The BNR-LSFB has two fluidized beds, running as anoxic/anaerobic and aerobic processes to accomplish simultaneous nitrification and denitrification and to remove carbonaceous substrates, nutrients and phosphorus, with continuous liquid and solids recirculation through the anoxic/anaerobic bed and the aerobic bed. The new BNR-LSFB system is not only an excellent alternative for conventional activated sludge type BNR technologies but is also capable of processing much higher loadings and suitable for industrial applications.
Abstract:
A continuous Liquid-Solids Circulating Fluidized Bed (LSCFB) preferably for use as an ion exchanger consists of two fluidized bed columns, a fluidized bed adsorber (downer) operating in conventional fluidized bed mode for adsorption of ions of interest and a fluidized bed riser for desorption of ions (operating as a riser fluidized bed) to provide regenerated particles. Ion exchange particles circulate continuously between the riser and the downer i.e. the particles that have adsorbed ions in the absorber pass from the adsorber (downer) to the desorber where they are regenerated and the so regenerated particles are return to the adsorber near the top of the adsorber column. The LSCFB can be used in processes for continuous recovery of the ions of interest.
Abstract:
A method for forming a coating composition for application to a surface. The method includes forming conglomerates by providing a plurality of nano-sized particles having a mean diameter in a range from about 1 to about 500 nanometers, the nano-sized particles having hydrophobic, super-hydrophobic, olephobic, or super-olephobic properties; mixing the plurality of nano-sized particles with a binding material to form a mixture and heating the mixture to induce curing to bind the nano-sized particles to form a consolidated cake-form material; cooling the consolidated cake-form material and grinding the cake-form material to produce conglomerates having a size in a range from about 1 micron to about 40 microns; and b) mixing the conglomerates with a coating material to be applied to a surface, the binding material being one of a thermosetting resin and a thermoplastic resin having a melting temperature higher than a curing temperature of the coating composition.
Abstract:
Blending methods for adding and uniformly mixing a small fraction of relatively small particles (additives) to a bulk particulate powder of larger size than the additives. In particular, the present invention provides blending methods for adding and uniformly mixing a small percentage of flow/fluidization additives into fine powders, especially fine paint powders. The fine powder and additives are first pre-mixed for macro-scale homogeneity and then further mixed at a micro-scale (such as with a screen mixing process) for micro-scale homogeneity. With these methods, optimum dispersions and maximum functionalities of additives can be obtained and the disadvantages caused by severe agglomerates of additives can be avoided.
Abstract:
Biological nutrient removal (BNR) in municipal wastewater treatment to remove carbonaceous substrates, nutrients and phosphorus, has recently become increasingly popular worldwide due to increasingly stringent regulations. Biological fluidized bed (BFB) technology, which could be potentially used for BNR processes, can provide some advantages such as high efficiency and compact structure. This present invention incorporates the fixed-film biological fluidized bed technology with the biological nutrient removal in a liquid-solid circulating fluidized bed, which has achieved the simultaneous elimination of organic carbon, nitrogen and phosphorus, in a very efficient manner and with very compact space requirements. The BNR-LSCFB has two fluidized beds, running as anoxic/anaerobic and aerobic processes to accomplish simultaneous nitrification and denitrification and to remove carbonaceous substrates, nutrients and phosphorus, with continuous liquid and solids recirculation through the anoxic/anaerobic bed and the aerobic bed. The new BNR-LSCFB system is not only an excellent alternative for conventional activated sludge type BNR technologies but is also capable of processing much higher loadings and suitable for industrial applications.
Abstract:
Blending methods for adding and uniformly mixing a small fraction of relatively small particles (additives) to a bulk particulate powder of larger size than the additives. In particular, the present invention provides blending methods for adding and uniformly mixing a small percentage of flow/fluidization additives into fine powders, especially fine paint powders. The fine powder and additives are first pre-mixed for macro-scale homogeneity and then further mixed at a micro-scale (such as with a screen mixing process) for micro-scale homogeneity. With these methods, optimum dispersions and maximum functionalities of additives can be obtained and the disadvantages caused by severe agglomerates of additives can be avoided.
Abstract:
Biological nutrient removal (BNR) in wastewater treatment to remove carbonaceous substrates, nutrients and phosphorus, has recently become increasingly popular worldwide due to increasingly stringent regulations. Biological fluidized bed (BFB) technology, which could be potentially used for BNR processes, can provide some advantages such as high efficiency and compact structure. This present invention incorporates the fixed-film biological fluidized bed technology with the biological nutrient removal in a twin liquid-solid fluidized bed, which has achieved the simultaneous elimination of organic carbon, nitrogen and phosphorus, in a very efficient manner and with very compact space requirements. The BNR-LSFB has two fluidized beds, running as anoxic/anaerobic and aerobic processes to accomplish simultaneous nitrification and denitrification and to remove carbonaceous substrates, nutrients and phosphorus, with continuous liquid and solids recirculation through the anoxic/anaerobic bed and the aerobic bed. The new BNR-LSFB system is not only an excellent alternative for conventional activated sludge type BNR technologies but is also capable of processing much higher loadings and suitable for industrial applications.
Abstract:
Biological nutrient removal (BNR) in wastewater treatment to remove carbonaceous substrates, nutrients and phosphorus, has recently become increasingly popular worldwide due to increasingly stringent regulations. Biological fluidized bed (BFB) technology, which could be potentially used for BNR processes, can provide some advantages such as high efficiency and compact structure. This present invention incorporates the fixed-film biological fluidized bed technology with the biological nutrient removal in a twin liquid-solid fluidized bed, which has achieved the simultaneous elimination of organic carbon, nitrogen and phosphorus, in a very efficient manner and with very compact space requirements. The BNR-LSFB has two fluidized beds, running as anoxic/anaerobic and aerobic processes to accomplish simultaneous nitrification and denitrification and to remove carbonaceous substrates, nutrients and phosphorus, with continuous liquid and solids recirculation through the anoxic/anaerobic bed and the aerobic bed. The new BNR-LSFB system is not only an excellent alternative for conventional activated sludge type BNR technologies but is also capable of processing much higher loadings and suitable for industrial applications.
Abstract:
The present invention provides a method and apparatus for dry coating solid dosage forms. The method includes the steps of placing solid dosage forms in a rotatable, electrically grounded housing, and spraying a film forming polymer powder composition into the housing during rotation thereof to form a polymer coating on the solid dosage forms, the polymer powder composition being sprayed using an electrostatic spray gun, and curing the coated solid dosage forms.
Abstract:
Blending methods for adding and uniformly mixing a small fraction of relatively small particles (additives) to a bulk particulate powder of larger size than the additives. In particular, the present invention provides blending methods for adding and uniformly mixing a small percentage of flow/fluidization additives into fine powders, especially fine paint powders. The fine powder and additives are first pre-mixed for macro-scale homogeneity and then further mixed at a micro-scale (such as with a screen mixing process) for micro-scale homogeneity. With these methods, optimum dispersions and maximum functionalities of additives can be obtained and the disadvantages caused by severe agglomerates of additives can be avoided.