Abstract:
Improved reaction efficiencies are achieved by the incorporation of enhanced hydrothermally stable catalyst supports in various water-forming hydrogenation reactions or reactions having water-containing feeds. Examples of water-forming hydrogenation reactions that may incorporate the enhanced hydrothermally stable catalyst supports include alcohol synthesis reactions, dehydration reactions, hydrodeoxygenation reactions, methanation reactions, catalytic combustion reaction, hydrocondensation reactions, and sulfur dioxide hydrogenation reactions. Advantages of the methods disclosed herein include an improved resistance of the catalyst support to water poisoning and a consequent lower rate of catalyst attrition and deactivation due to hydrothermal instability. Accordingly, higher efficiencies and yields may be achieved by extension of the enhanced catalyst supports to one or more of the aforementioned reactions.
Abstract:
Methods and compositions relate to a Fischer-Tropsch catalyst utilized to convert syngas into paraffins. The catalyst includes a given amount of sulfur content from contact of a catalytic supported metal with sulfur. Subsequent activation of the catalyst prepares the catalyst to be used for conversion of the syngas. The sulfur content maintained in the catalyst after being activated influences selectivity to paraffins over olefins and oxygenates.
Abstract:
Methods and systems relate to upgrading light olefins, such as ethylene, propylene and butylenes, diluted in a gas mixture, such as refinery fuel gas. The upgrading yields products in a gasoline, distillate, lube oil or wax range without requiring purification or compression of the gas mixture prior to feeding the gas mixture to a reactor. In operation, the mixture contacts a solid oligomerization catalyst, such as silica supported chromium, within the reactor. This contact occurs at a first temperature suitable to produce oligomers that are formed of the olefins and adsorb on the catalyst in liquid or solid phases. Next, heating the catalyst to a second temperature higher the first temperature desorbs the oligomers that are recovered and separated into the products.
Abstract:
A process of modifying a zeolite catalyst to produce a modified zeolite catalyst wherein the modified zeolite catalyst has blocked pore sites. An oxygenated feed is flowed over the modified zeolite catalyst, wherein the oxygenated feed comprises hydrocarbons, methanol and dimethyl ether or a mixture thereof. The hydrocarbons, methanol and dimethyl ether in the oxygenated feed react with the modified zeolite catalyst to produce cyclic hydrocarbons, wherein the cyclic hydrocarbons produced has less than 10% durene and a median carbon number is C8.
Abstract:
A method of producing a MoS2 catalyst. The method begins by the decomposition of ammonium tetrathiomolybdate in an organic solvent. This decomposition is done in the presence of a solution comprising: a solvent and a promoter, and done under gaseous pressure.
Abstract:
Methods and apparatus relate to recovery of in situ upgraded hydrocarbons by injecting steam and hydrogen into a reservoir containing the hydrocarbons. A mixture output generated as water is vaporized by direct contact with flow from fuel-rich combustion provides the steam and hydrogen. The steam heats the hydrocarbons facilitating flow of the hydrocarbons and reaction of the hydrogen with the hydrocarbons to enable hydroprocessing prior to recovery of the hydrocarbons to surface.
Abstract:
Improved reaction efficiencies are achieved by the incorporation of enhanced hydrothermally stable catalyst supports in various water-forming hydrogenation reactions or reactions having water-containing feeds. Examples of water-forming hydrogenation reactions that may incorporate the enhanced hydrothermally stable catalyst supports include alcohol synthesis reactions, dehydration reactions, hydrodeoxygenation reactions, methanation reactions, catalytic combustion reaction, hydrocondensation reactions, and sulfur dioxide hydrogenation reactions. Advantages of the methods disclosed herein include an improved resistance of the catalyst support to water poisoning and a consequent lower rate of catalyst attrition and deactivation due to hydrothermal instability. Accordingly, higher efficiencies and yields may be achieved by extension of the enhanced catalyst supports to one or more of the aforementioned reactions.
Abstract:
Methods and compositions relate to a Fischer-Tropsch catalyst utilized to convert syngas into paraffins. The catalyst includes a given amount of sulfur content from contact of a catalytic supported metal with sulfur. Subsequent activation of the catalyst prepares the catalyst to be used for conversion of the syngas. The sulfur content maintained in the catalyst after being activated influences selectivity to paraffins over olefins and oxygenates.
Abstract:
The invention discloses a composition comprising a hybrid composite organic-inorganic membrane. The hybrid organic-inorganic membrane according to the present invention may comprise an amorphous porous layer incorporating organic functionalities. The amorphous porous layer may be deposited on a porous alumina substrate by chemical vapor deposition (CVD). The amorphous porous layer may comprise a single top-layer (STL), multiple top-layers (MTL) or mixed top-layers (XTL). The substrate may comprise a single layer or multiple graded layers of alumina.
Abstract:
The invention discloses a composition comprising a hybrid composite organic-inorganic membrane. The hybrid organic-inorganic membrane according to the present invention may comprise an amorphous porous layer incorporating organic functionalities. The amorphous porous layer may be deposited on a porous alumina substrate by chemical vapor deposition (CVD). The amorphous porous layer may comprise a single top-layer (STL), multiple top-layers (MTL) or mixed top-layers (XTL). The substrate may comprise a single layer or multiple graded layers of alumina.