Abstract:
According to an embodiment of the present invention, a gas-liquid circulating type gas hydrate reactor, includes: a reactor body configured to be supplied with gas and water to generate a gas hydrate; and a bubble generator configured to be disposed around a lower portion of the reactor body, wherein the gas supplied from the lower portion of the reactor body is jetted into the reactor body through the bubble generator. The gas-liquid circulating type gas hydrate reactor in accordance with the present invention makes it possible to jet gas at a high speed by using the bubble generator disposed at the low portion of the reactor body so as to promote the reaction of water and gas which are accommodated in the reactor body while forming a water stream at the lower portion of the reactor body that enables a smooth agitation of the water and the gas.
Abstract:
According to an embodiment of the present invention, a gas-liquid circulating type gas hydrate reactor, includes: a reactor body configured to be supplied with gas and water to generate a gas hydrate; and a bubble generator configured to be disposed around a lower portion of the reactor body, wherein the gas supplied from the lower portion of the reactor body is jetted into the reactor body through the bubble generator.The gas-liquid circulating type gas hydrate reactor in accordance with the present invention makes it possible to jet gas at a high speed by using the bubble generator disposed at the low portion of the reactor body so as to promote the reaction of water and gas which are accommodated in the reactor body while forming a water stream at the lower portion of the reactor body that enables a smooth agitation of the water and the gas.
Abstract:
A steam control device and method of a washing machine are disclosed. The steam control method includes determining whether an instruction of course washing with steam is input; opening a water supply valve to supply water into a steam generator if the instruction of course washing is input; detecting a temperature of water supplied to the steam generator using a temperature sensor; and checking a water supply time corresponding to the detected water supply temperature and supplying water to the steam generator for the water supply time.
Abstract:
A double helix gas hydrate reactor is disclosed. The reactor includes an inlet port (510) into which water and gas are supplied, an outlet port (540) disposed opposite the inlet port, a hollow jacket (580) extending from the inlet port to the outlet port, a hollow outer helix (550) installed in the hollow jacket, and an inner helix (560) installed in the outer helix. The gas and water that are supplied into the inlet port react with each other to form gas hydrate in a channel defined between the inner helix and the hollow jacket.
Abstract:
Disclosed herein is an apparatus for continuously producing and pelletizing gas hydrates. The apparatus includes a gas supply unit, a water supply unit and a reactor. Gas and water are respectively supplied from the gas supply unit and the water supply unit into the reactor. The gas and water react with each other in the reactor. The reactor includes a dual cylinder unit which forms a gas hydrate in such a way as to squeeze a slurry of reaction water formed by the reaction between the gas and water. The dual cylinder unit includes an upper cylinder, a lower cylinder and a connection pipe which connects the upper cylinder to the lower cylinder. The connection pipe has passing holes through which the reaction water in the reactor flows into and out of the connection pipe.
Abstract:
A steam control device and method of a washing machine are disclosed. The steam control method includes determining whether an instruction of course washing with steam is input; opening a water supply valve to supply water into a steam generator if the instruction of course washing is input; detecting a temperature of water supplied to the steam generator using a temperature sensor; and checking a water supply time to corresponding to the detected water supply temperature and supplying water to the steam generator for the water supply time.
Abstract:
Disclosed herein is a condensation type dryer. The dryer includes a circulation tube communicating at both ends thereof with a tub to define a passage through which air inside the tub is circulated, a blowing fan disposed inside the circulation tube to circulate the air inside the tub, a heater disposed inside the circulation tube to heat air supplied into the tub, and a condensation tube connected to a water supply source to supply cooling water into the circulation tube, the condensation tube has a serpentine shape.
Abstract:
The present invention relates to an apparatus comprising a reactor body to which gas and water are supplied to create a gas hydrate; an upper cover which is engaged to an upper portion of the reactor body, a scraper mounted rotationally within the reactor body, and a motor for providing a driving force to the scraper. It is possible to remove gas hydrate particles attached to at least one of an inner surface of the reactor body and an inner surface of the upper cover, by a rotary driving of the scraper. According to the invention, it is possible to prevent a material hindering a heat transfer by attaching on a wall surface of the reactor, through a process of scraping out gas hydrate particles, when the scraper which is rotationally driven about a center axis of the reactor is close to the inner surface of the reactor.
Abstract:
Disclosed herein is an apparatus and method for continuously producing and dehydrating gas hydrates. The apparatus includes a gas source, a water source, a reactor, a spinning wheel, and a centrifugal separator. The gas source and the water source are connected to the reactor. Gas and water are respectively supplied from the gas source and the water source into the reactor and react with each other in the reactor to form gas hydrate slurry. The spinning wheel and the centrifugal separator are provided in the reactor. The spinning wheel supplies the formed gas hydrate slurry to the centrifugal separator. The centrifugal separator dehydrates the gas hydrate slurry. Water removed from the gas hydrate slurry by the dehydration of the centrifugal separator is re-supplied into the reactor.
Abstract:
Disclosed herein is a condensation type dryer. The dryer includes a circulation tube communicating at both ends thereof with a tub to define a passage through which air inside the tub is circulated, a blowing fan disposed inside the circulation tube to circulate the air inside the tub, a heater disposed inside the circulation tube to heat air supplied into the tub, and a condensation tube connected to a water supply source to supply cooling water into the circulation tube, the condensation tube has a serpentine shape.