Abstract:
Methods and compositions for treating retinal diseases comprising therapeutic amounts of a compound selected from a normal Puf-A gene product, an active polypeptide fragment thereof, an analog thereof or a peptidomimetic thereof. Vectors, including AAV vectors comprising the therapeutic compound are provided. Puf-A compositions suitable for subretinal, intravitreal, topical, subconjunctival, retrobulbar, periocular, suprachoroidal, or intraocular administration are provided. Methods for screening siRNA, RNAi and shRNA, small molecules and monoclonal antibodies that inhibit Puf-A target activity and reduce apoptosis are provided.
Abstract:
Methods and compositions for treating retinal diseases comprising therapeutic amounts of a compound selected from a normal Puf-A gene product, an active polypeptide fragment thereof, an analog thereof or a peptidomimetic thereof. Vectors, including AAV vectors comprising the therapeutic compound are provided. Puf-A compositions suitable for subretinal, intravitreal, topical, subconjunctival, retrobulbar, periocular, suprachoroidal, or intraocular administration are provided. Methods for screening siRNA, RNAi and shRNA, small molecules and monoclonal antibodies that inhibit Puf-A target activity and reduce apoptosis are provided.
Abstract:
The present invention provides a method of performing optical proximity corrections of a photo mask pattern by using a computer. The photo mask pattern is formed on a photo mask which is used when performing photolithography for forming a predetermined original pattern by exposing a photo-resist layer in a predetermined area of a semiconductor wafer. The photo mask pattern is divided into a plurality of rectangular blocks. Each block can be bright or dark, and a least one side and two corners of the block are shared with another block. Each of shared corners is checked to find corners which may be affected by an optic proximity effect, and those corners are modified so as to prevent them from being affected by the optic proximity effect.
Abstract:
The present invention provides a method of writing a set of binary codes into a ROM. The method is performed by forming a first photo mask and a second photo mask according to an original first code pattern, an original second code pattern, and a set of binary codes to be written into the ROM. Final first and second code patterns are formed by coupling the binary codes to be written with the original first and second code patterns by using a Boolean logical OR operation. The first and second photo masks are formed according to the final first and second code patterns. The first photolithographic process is performed using the first photo mask, and the first ion implantation process is performed; the second photolithographic process is performed using the second photo mask, and the second ion implantation process is performed. Thus the set of binary codes is written into the ROM completely and correctly.