Abstract:
To provide a control board for efficiently generating electric energy in a power generating device from heat generated from an electronic device. A control board includes a board including a first heat dissipating pad; an electronic device including a second heat dissipating pad to dissipate heat; a power generating device including a Peltier device which converts heat energy generated from the electronic device into electric energy, wherein the power generating device is sandwiched between the first heat dissipating pad and the second heat dissipating pad; and a power supply circuit configured to reuse the electric energy.
Abstract:
A power supply device installed in an electronic apparatus includes a first power supply outputting power upon a plug being connected to a system power supply, a second power supply outputting power upon receiving of a power supply control signal, a third power supply outputting power from a battery, a controller operating using the power from the second power supply and configured to control the electronic apparatus, a flip-flop configured to operate using the power from the third power supply and configured to store, upon activating the electronic apparatus, first logic data or upon shutting down the electronic apparatus, second logic data, and a power supply control switch operating using the power from the first power supply, to output the power supply control signal to the second power supply, in response to activating the electronic apparatus or in response to storing the first logic data in the flip-flop.
Abstract:
An information processing apparatus providing a specific function includes a non-volatile function program memory that stores a function program for providing the specific function, a main memory, and an arithmetic device that reads and stores the function program from the function program memory into the main memory at startup of the information processing apparatus and performs an arithmetic operation based on the function program to execute the function program. The arithmetic device operates at a start frequency set for startup as a clock frequency for accessing the function program memory when reading and storing the function program from the function program memory into the main memory at the startup, and operates at a frequency lower than the start frequency as the clock frequency for accessing the function program memory after reading and storing the function program into the main memory.
Abstract:
An information processing apparatus providing a specific function includes a non-volatile function program memory that stores a function program for providing the specific function, a main memory, and an arithmetic device that reads and stores the function program from the function program memory into the main memory at startup of the information processing apparatus and performs an arithmetic operation based on the function program to execute the function program. The arithmetic device operates at a start frequency set for startup as a clock frequency for accessing the function program memory when reading and storing the function program from the function program memory into the main memory at the startup, and operates at a frequency lower than the start frequency as the clock frequency for accessing the function program memory after reading and storing the function program into the main memory.
Abstract:
A first capacitor recess and a wiring trench are formed through an interlayer insulating film. A lower electrode fills the first capacitor recess, and a first wiring fills the wiring trench. An etching stopper film and a via layer insulating film are disposed over the interlayer insulating film. A first via hole extends through the via layer insulating film and etching stopper film and reaches the first wiring, and a first plug fills the first via hole. A second capacitor recess is formed through the via layer insulating film, the second capacitor recess at least partially overlapping the lower electrode, as viewed in plan. The upper electrode covers the bottom and side surfaces of the second capacitor recess. A capacitor is constituted of the upper electrode, etching stopper film and lower electrode. A second wring connected to the first plug is formed over the via layer insulating film.
Abstract:
A first capacitor recess and a wiring trench are formed through an interlayer insulating film. A lower electrode fills the first capacitor recess, and a first wiring fills the wiring trench. An etching stopper film and a via layer insulating film are disposed over the interlayer insulating film. A first via hole extends through the via layer insulating film and etching stopper film and reaches the first wiring, and a first plug fills the first via hole. A second capacitor recess is formed through the via layer insulating film, the second capacitor recess at least partially overlapping the lower electrode, as viewed in plan. The upper electrode covers the bottom and side surfaces of the second capacitor recess. A capacitor is constituted of the upper electrode, etching stopper film and lower electrode. A second wring connected to the first plug is formed over the via layer insulating film.
Abstract:
A wiring trench is formed in an interlayer insulating film partway in the depth direction of the interlayer insulating film. A via hole is formed extending from the bottom of the wiring trench to the bottom of the interlayer insulating film. A capacitor recess is formed reaching the bottom of the interlayer insulating film. A conductive member is embedded in the wiring trench and via hole. A capacitor is embedded in the capacitor recess, including a lower electrode, a capacitor dielectric film and an upper electrode. The lower electrode is made of the same material as that of the conductive member and disposed along the bottom and side surface of the capacitor recess. A concave portion is formed on an upper surface of the lower electrode, and the capacitor dielectric film covers an inner surface of the concave portion. The upper electrode is embedded in the concave portion.
Abstract:
A low-temperature plasma treatment is applied to a surface of an aramid paper so as to allow the surface to have a compositional atomic ratio X (O/C) of the number of oxygen atoms (O) to the number of carbon atoms (C) ranging from 110% to 220% of a theoretical atomic ratio. The treatment is performed at an intensity ranging from 120 to 1500 W·min/m2 with a low-temperature plasma treatment apparatus of internal electrode system. The aramid paper is superposed with a nonhydrolyzable resin film and the resulting article is pressurized to give an aramid-resin film laminate. The laminate is inexpensive, has both superior electrical properties and high mechanical strength, excels in elasticity, and is useful as an insulation material.
Abstract:
A bookbinding apparatus inserts ring parts of a comb-shaped ring into binding holes of a sheet bundle and files and binds the sheet bundle, sequentially and includes a binding hole forming section configured to form binding holes in the sheet, a compiling section configured to arrange the sheet in which the binding holes are formed to make the sheet bundle, a comb-shaped ring feeding section configured to feed the comb-shaped ring piece by piece, a binding section configured to receive the fed comb-shaped ring, insert the ring parts of the comb-shaped ring into the binding holes of the sheet bundle, and bind the sheet bundle, and a bound-book discharging section configured to transfer the sheet bundle bound by the binding section to a storage stacker.
Abstract:
A first capacitor recess and a wiring trench are formed through an interlayer insulating film. A lower electrode fills the first capacitor recess, and a first wiring fills the wiring trench. An etching stopper film and a via layer insulating film are disposed over the interlayer insulating film. A first via hole extends through the via layer insulating film and etching stopper film and reaches the first wiring, and a first plug fills the first via hole. A second capacitor recess is formed through the via layer insulating film, the second capacitor recess at least partially overlapping the lower electrode, as viewed in plan. The upper electrode covers the bottom and side surfaces of the second capacitor recess. A capacitor is constituted of the upper electrode, etching stopper film and lower electrode. A second wring connected to the first plug is formed over the via layer insulating film.