Abstract:
In a dispersion compensation element 10X, a plurality of regions (I) and (II) mutually different in radius and interval of holes 24 are set, and voltages applied at electrodes 30A and 30B are controlled in respective regions (I) and (II) to make variable the sign and the absolute value of chromatic dispersion compensation. In a dispersion compensation system formed by using the dispersion compensation element 10X, an optical pulse picked up from an optical fiber transmission line is monitored, and the amount of voltage applied at the dispersion compensation element 10X is controlled based on its chromatic dispersion information to perform dispersion compensation of the optical pulse propagated through the optical fiber transmission line. Alternatively, dispersion compensation can be performed by varying the carrier density of the waveguide by applying a voltage to change the refractive index of the waveguide.
Abstract:
An optical transmission system is provided by preparing a two-photon transition medium where efficiency of two-photon transition does not depend on polarization; splitting an optical pulse to be measured into a probe optical pulse and a gate optical pulse by a polarization independent beam splitter; after adding variable delay time to this gate optical pulse, entering the probe optical pulse and the gate optical pulse into a highly efficient two-photon absorption medium so that both of the pulses cross each other, and thereby generating an optical gate function; resolving a spectrum of the transmitted probe optical pulse, and detecting the spectrum by a photodetector; and measuring intensity of electric-field absorption of the probe optical pulse as a function of delay time and a frequency.
Abstract:
An optical transmission system is provided by preparing a two-photon transition medium where efficiency of two-photon transition does not depend on polarization; splitting an optical pulse to be measured into a probe optical pulse and a gate optical pulse by a polarization independent beam splitter; after adding variable delay time to this gate optical pulse, entering the probe optical pulse and the gate optical pulse into a highly efficient two-photon absorption medium so that both of the pulses cross each other, and thereby generating an optical gate function; resolving a spectrum of the transmitted probe optical pulse, and detecting the spectrum by a photodetector; and measuring intensity of electric-field absorption of the probe optical pulse as a function of delay time and a frequency.
Abstract:
A nanofabricated logic device, operable at multiple (more than two) logic levels comprises asymmetrically coupled quantum point contacts provided with respective sources and drains and a coupling region between gate electrodes. The quantum mechanical carrier wavefunction in the region of QPC1, 2 is spatially asmmetric with alternate quantised energy levels lying either in QPC1, or QPC2, so that by changing the energy level, the conductance of the device can be switched between multiple stable conductance levels. The device can be used to provide a multilevel output switched in response to terahertz pulses provided by an array of optical detectors.
Abstract:
A method for manufacturing a planar optical waveguide device of which a core includes a plurality of alternatively arranged fin portions and valley portions to form a grating structure, in which the core widths of the valley portions vary along the longitudinal direction, the method including: a high refractive index material layer forming step of forming a high refractive index material layer; a photoresist layer forming step of forming a photoresist layer on the high refractive index material layer; a first exposure step of forming shaded portions on the photoresist layer using a phase-shifting photomask; a second exposure step of forming shaded portions on the photoresist layer using a binary photomask; a development step of developing the photoresist layer; and an etching step of etching the high refractive index material layer using the photoresist pattern resulted from the development step.
Abstract:
The optical waveguide-type wavelength dispersion compensation device of the present invention has an optical waveguide as a reflection-type wavelength dispersion compensation device. The equivalent refractive index of a core changes unevenly along a light propagation direction by changing physical dimensions of the core that is embedded in a cladding. The core is designed by (a) setting a first desired reflection spectrum, ignoring transmission losses of the optical waveguide, and designing an optical waveguide that is capable of compensating the wavelength dispersion of an optical fiber to be compensated; (b) deriving a wavelength dependency characteristic of a transmission loss amount of the optical waveguide from an effective length of the optical waveguide designed in process (a); and (c) adding a reverse dependency characteristic of the wavelength dependency characteristic to the first reflection spectrum to correct it to a second reflection spectrum, and redesigning an equivalent refractive index distribution of the optical waveguide designed in the process (a) by using this second reflection spectrum.
Abstract:
An optical waveguide comprising a cladding and a core embedded in the cladding. An equivalent refractive index of the core changes unevenly along a light propagation direction by changing physical dimensions of the core.
Abstract:
In a dispersion compensation element 10X, a plurality of regions (I) and (II) mutually different in radius and interval of holes 24 are set, and voltages applied at electrodes 30A and 30B are controlled in respective regions (I) and (II) to make variable the sign and the absolute value of chromatic dispersion compensation. In a dispersion compensation system formed by using the dispersion compensation element 10X, an optical pulse picked up from an optical fiber transmission line is monitored, and the amount of voltage applied at the dispersion compensation element 10X is controlled based on its chromatic dispersion information to perform dispersion compensation of the optical pulse propagated through the optical fiber transmission line. Alternatively, dispersion compensation can be performed by varying the carrier density of the waveguide by applying a voltage to change the refractive index of the waveguide.
Abstract:
An adaptive dispersion compensation device offered performs stably the dispersion compensation, inclusive of waveform shaping, for an optical fiber transmission line. The device comprises a plurality of basic units each including a chirp-bragg fiber grating which is formed in an optical waveguide, a reflection mirror which is disposed on the light input side of the chirp-bragg fiber grating by being detachable and an optical circulator which is connected to the reflection mirror, means of connecting the basic units in series, and means of controlling the dispersion characteristics of each chirp-bragg fiber grating by applying a temperature gradient to it along its axis. The individual chirp-bragg fiber gratings with the application of temperature gradients vary the dispersion quality of the lights passing through the basic units, thereby controlling the dispersion quality of the input signal light stably and releasing the compensated signal light.
Abstract:
A field effect transistor and a ballistic transistor using semiconductor whiskers each having a desired diameter and formed at s desired location, a semiconductor vacuum microelectronic device using the same as electron emitting materials, a light emitting device using the same as quantum wires and the like are disclosed.