Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method
    1.
    发明授权
    Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method 失效
    色散补偿元件,光学晶体,色散补偿系统,色散补偿方法

    公开(公告)号:US07515785B2

    公开(公告)日:2009-04-07

    申请号:US10542383

    申请日:2004-01-14

    Abstract: In a dispersion compensation element 10X, a plurality of regions (I) and (II) mutually different in radius and interval of holes 24 are set, and voltages applied at electrodes 30A and 30B are controlled in respective regions (I) and (II) to make variable the sign and the absolute value of chromatic dispersion compensation. In a dispersion compensation system formed by using the dispersion compensation element 10X, an optical pulse picked up from an optical fiber transmission line is monitored, and the amount of voltage applied at the dispersion compensation element 10X is controlled based on its chromatic dispersion information to perform dispersion compensation of the optical pulse propagated through the optical fiber transmission line. Alternatively, dispersion compensation can be performed by varying the carrier density of the waveguide by applying a voltage to change the refractive index of the waveguide.

    Abstract translation: 在色散补偿元件10X中,设置孔24的半径和间隔相互不同的多个区域(I)和(II),并且在各个区域(I)和(II)中控制施加在电极30A和30B的电压, 使色散补偿的符号和绝对值可变。 在通过使用色散补偿元件10X形成的色散补偿系统中,监视从光纤传输线拾取的光脉冲,并且基于其色散信息来控制在色散补偿元件10X处施加的电压量以执行 通过光纤传输线传播的光脉冲的色散补偿。 或者,可以通过施加电压来改变波导的折射率来改变波导的载流子密度来执行色散补偿。

    Instruments of optical pulse characterization
    2.
    发明授权
    Instruments of optical pulse characterization 有权
    光脉冲表征仪器

    公开(公告)号:US07053996B2

    公开(公告)日:2006-05-30

    申请号:US10965974

    申请日:2004-10-18

    Applicant: Kensuke Ogawa

    Inventor: Kensuke Ogawa

    CPC classification number: G01J11/00

    Abstract: An optical transmission system is provided by preparing a two-photon transition medium where efficiency of two-photon transition does not depend on polarization; splitting an optical pulse to be measured into a probe optical pulse and a gate optical pulse by a polarization independent beam splitter; after adding variable delay time to this gate optical pulse, entering the probe optical pulse and the gate optical pulse into a highly efficient two-photon absorption medium so that both of the pulses cross each other, and thereby generating an optical gate function; resolving a spectrum of the transmitted probe optical pulse, and detecting the spectrum by a photodetector; and measuring intensity of electric-field absorption of the probe optical pulse as a function of delay time and a frequency.

    Abstract translation: 通过制备双光子转换介质提供光传输系统,其中双光子跃迁的效率不依赖于极化; 将要测量的光脉冲通过偏振无关的分束器分离成探针光脉冲和栅极光脉冲; 在向该栅极光脉冲添加可变延迟时间之后,将探针光脉冲和栅极光脉冲输入到高效双光子吸收介质中,使得两个脉冲彼此交叉,从而产生光栅功能; 解析所传送的探测光脉冲的光谱,并通过光电检测器检测光谱; 并测量作为延迟时间和频率的函数的探针光脉冲的电场吸收强度。

    Instruments of optical pulse characterization
    3.
    发明申请
    Instruments of optical pulse characterization 有权
    光脉冲表征仪器

    公开(公告)号:US20050058449A1

    公开(公告)日:2005-03-17

    申请号:US10965974

    申请日:2004-10-18

    Applicant: Kensuke Ogawa

    Inventor: Kensuke Ogawa

    CPC classification number: G01J11/00

    Abstract: An optical transmission system is provided by preparing a two-photon transition medium where efficiency of two-photon transition does not depend on polarization; splitting an optical pulse to be measured into a probe optical pulse and a gate optical pulse by a polarization independent beam splitter; after adding variable delay time to this gate optical pulse, entering the probe optical pulse and the gate optical pulse into a highly efficient two-photon absorption medium so that both of the pulses cross each other, and thereby generating an optical gate function; resolving a spectrum of the transmitted probe optical pulse, and detecting the spectrum by a photodetector; and measuring intensity of electric-field absorption of the probe optical pulse as a function of delay time and a frequency.

    Abstract translation: 通过制备双光子转换介质提供光传输系统,其中双光子跃迁的效率不依赖于极化; 将要测量的光脉冲通过偏振无关的分束器分离成探针光脉冲和栅极光脉冲; 在向该栅极光脉冲添加可变延迟时间之后,将探针光脉冲和栅极光脉冲输入到高效双光子吸收介质中,使得两个脉冲彼此交叉,从而产生光栅功能; 解析所传送的探测光脉冲的光谱,并通过光电检测器检测光谱; 并测量作为延迟时间和频率的函数的探针光脉冲的电场吸收强度。

    Nanofabricated device for multiple-state logic operation
    4.
    发明授权
    Nanofabricated device for multiple-state logic operation 失效
    用于多状态逻辑运算的纳米装置

    公开(公告)号:US5485018A

    公开(公告)日:1996-01-16

    申请号:US250262

    申请日:1994-05-27

    CPC classification number: B82Y10/00 H01L29/7613 H01L29/772 H01L31/0352

    Abstract: A nanofabricated logic device, operable at multiple (more than two) logic levels comprises asymmetrically coupled quantum point contacts provided with respective sources and drains and a coupling region between gate electrodes. The quantum mechanical carrier wavefunction in the region of QPC1, 2 is spatially asmmetric with alternate quantised energy levels lying either in QPC1, or QPC2, so that by changing the energy level, the conductance of the device can be switched between multiple stable conductance levels. The device can be used to provide a multilevel output switched in response to terahertz pulses provided by an array of optical detectors.

    Abstract translation: 可在多个(多于两个)逻辑电平上操作的纳米级逻辑器件包括设置有相应源极和漏极的非对称耦合的量子点触点以及栅电极之间的耦合区域。 QPC1,2区域中的量子力学载波波函数与位于QPC1或QPC2中的交替量子能级空间对称,从而通过改变能级,器件的电导能够在多个稳定电导水平之间切换。 该装置可用于提供响应于由光学检测器阵列提供的太赫兹脉冲而切换的多电平输出。

    MANUFACTURING METHOD OF PLANAR OPTICAL WAVEGUIDE DEVICE WITH GRATING STRUCTURE
    5.
    发明申请
    MANUFACTURING METHOD OF PLANAR OPTICAL WAVEGUIDE DEVICE WITH GRATING STRUCTURE 有权
    具有光栅结构的平面光波导器件的制造方法

    公开(公告)号:US20110049735A1

    公开(公告)日:2011-03-03

    申请号:US12547115

    申请日:2009-08-25

    CPC classification number: G02B6/124

    Abstract: A method for manufacturing a planar optical waveguide device of which a core includes a plurality of alternatively arranged fin portions and valley portions to form a grating structure, in which the core widths of the valley portions vary along the longitudinal direction, the method including: a high refractive index material layer forming step of forming a high refractive index material layer; a photoresist layer forming step of forming a photoresist layer on the high refractive index material layer; a first exposure step of forming shaded portions on the photoresist layer using a phase-shifting photomask; a second exposure step of forming shaded portions on the photoresist layer using a binary photomask; a development step of developing the photoresist layer; and an etching step of etching the high refractive index material layer using the photoresist pattern resulted from the development step.

    Abstract translation: 一种平面光波导装置的制造方法,其特征在于,芯体具有多个交替设置的翅片部和谷部,以形成其中谷部的芯宽沿纵向变化的格栅结构,该方法包括: 形成高折射率材料层的高折射率材料层形成步骤; 在高折射率材料层上形成光致抗蚀剂层的光致抗蚀剂层形成步骤; 使用相移光掩模在光致抗蚀剂层上形成阴影部分的第一曝光步骤; 第二曝光步骤,使用二元光掩模在所述光致抗蚀剂层上形成阴影部分; 显影光致抗蚀剂层的显影步骤; 以及使用由显影步骤产生的光致抗蚀剂图案来蚀刻高折射率材料层的蚀刻步骤。

    OPTICAL WAVEGUIDE-TYPE WAVELENGTH DISPERSION COMPENSATION DEVICE AND MANUFACTURING METHOD THEREOF
    6.
    发明申请
    OPTICAL WAVEGUIDE-TYPE WAVELENGTH DISPERSION COMPENSATION DEVICE AND MANUFACTURING METHOD THEREOF 审中-公开
    光波导型波长分散补偿装置及其制造方法

    公开(公告)号:US20100316341A1

    公开(公告)日:2010-12-16

    申请号:US12819699

    申请日:2010-06-21

    CPC classification number: B05D5/061 G02B6/12007 G02B6/124 G02B6/29394

    Abstract: The optical waveguide-type wavelength dispersion compensation device of the present invention has an optical waveguide as a reflection-type wavelength dispersion compensation device. The equivalent refractive index of a core changes unevenly along a light propagation direction by changing physical dimensions of the core that is embedded in a cladding. The core is designed by (a) setting a first desired reflection spectrum, ignoring transmission losses of the optical waveguide, and designing an optical waveguide that is capable of compensating the wavelength dispersion of an optical fiber to be compensated; (b) deriving a wavelength dependency characteristic of a transmission loss amount of the optical waveguide from an effective length of the optical waveguide designed in process (a); and (c) adding a reverse dependency characteristic of the wavelength dependency characteristic to the first reflection spectrum to correct it to a second reflection spectrum, and redesigning an equivalent refractive index distribution of the optical waveguide designed in the process (a) by using this second reflection spectrum.

    Abstract translation: 本发明的光波导型波长色散补偿装置具有作为反射型波长色散补偿装置的光波导。 芯的等效折射率通过改变嵌入在包层中的芯的物理尺寸沿光传播方向不均匀地变化。 核心是通过(a)设置第一期望的反射光谱,忽略光波导的传输损耗,以及设计能够补偿待补偿的光纤的波长色散的光波导; (b)从工艺(a)中设计的光波导的有效长度导出光波导的传输损耗量的波长依赖特性; 以及(c)将第一反射光谱的波长依赖特性的反向依赖特性加到第二反射光谱上,并且通过使用该第二反射光谱重新设计在(a)中设计的光波导的等效折射率分布 反射光谱。

    Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method
    8.
    发明申请
    Dispersion compensation element, optical crystal, dispersion compensation system, dispersion compensation method 失效
    色散补偿元件,光学晶体,色散补偿系统,色散补偿方法

    公开(公告)号:US20060051016A1

    公开(公告)日:2006-03-09

    申请号:US10542383

    申请日:2004-01-14

    Abstract: In a dispersion compensation element 10X, a plurality of regions (I) and (II) mutually different in radius and interval of holes 24 are set, and voltages applied at electrodes 30A and 30B are controlled in respective regions (I) and (II) to make variable the sign and the absolute value of chromatic dispersion compensation. In a dispersion compensation system formed by using the dispersion compensation element 10X, an optical pulse picked up from an optical fiber transmission line is monitored, and the amount of voltage applied at the dispersion compensation element 10X is controlled based on its chromatic dispersion information to perform dispersion compensation of the optical pulse propagated through the optical fiber transmission line. Alternatively, dispersion compensation can be performed by varying the carrier density of the waveguide by applying a voltage to change the refractive index of the waveguide.

    Abstract translation: 在色散补偿元件10X中,设置孔24的半径和间隔相互不同的多个区域(I)和(II),并且在各个区域(I)和 (II)使色散补偿的符号和绝对值可变。 在通过使用色散补偿元件10X形成的色散补偿系统中,监视从光纤传输线拾取的光脉冲,并且基于色散信息来控制施加在色散补偿元件10 X处的电压量 对通过光纤传输线传播的光脉冲进行色散补偿。 或者,可以通过施加电压来改变波导的折射率来改变波导的载流子密度来执行色散补偿。

    Adaptive dispersion compensation device and control method for the same
    9.
    发明授权
    Adaptive dispersion compensation device and control method for the same 失效
    自适应色散补偿装置及其控制方法相同

    公开(公告)号:US06674931B2

    公开(公告)日:2004-01-06

    申请号:US10252844

    申请日:2002-09-24

    Abstract: An adaptive dispersion compensation device offered performs stably the dispersion compensation, inclusive of waveform shaping, for an optical fiber transmission line. The device comprises a plurality of basic units each including a chirp-bragg fiber grating which is formed in an optical waveguide, a reflection mirror which is disposed on the light input side of the chirp-bragg fiber grating by being detachable and an optical circulator which is connected to the reflection mirror, means of connecting the basic units in series, and means of controlling the dispersion characteristics of each chirp-bragg fiber grating by applying a temperature gradient to it along its axis. The individual chirp-bragg fiber gratings with the application of temperature gradients vary the dispersion quality of the lights passing through the basic units, thereby controlling the dispersion quality of the input signal light stably and releasing the compensated signal light.

    Abstract translation: 提供的自适应色散补偿装置稳定地执行光纤传输线的色散补偿(包括波形整形)。 该装置包括多个基本单元,每个基本单元包括形成在光波导中的啁啾布拉格光纤光栅,通过可拆卸地设置在啁啾布拉格光栅的光输入侧的反射镜和光循环器, 连接到反射镜,串联连接基本单元的装置,以及通过沿其轴线施加温度梯度来控制每个啁啾布拉格光纤光栅的色散特性的装置。 具有温度梯度的单个啁啾布拉格光栅光栅改变通过基本单元的光的色散质量,从而稳定地控制输入信号光的色散质量并释放补偿的信号光。

Patent Agency Ranking