Abstract:
The invention relates to the field of mechanical engineering and refers to a radiation protective shield for vacuum furnaces and protective atmosphere furnaces, which shield is used for the best possible shielding from thermal radiation. The object of the present invention is to disclose thermal radiation protective shields of reduced weight with identical or lower effective emissivity. The object is attained by a thermal radiation protective shield for vacuum furnaces and protective atmosphere furnaces, composed of at least one porous ceramic and/or metallic material that has high thermal radiation-reflecting properties at least on a surface in the direction of the heat source.
Abstract:
Nozzles for plasma torches are essentially formed from a metal or a metal alloy. To increase the life of such nozzles wear-resistant microparticles of a hard material, preferably a hard ceramic material, are embedded in the metal or the metal alloy, at least in certain regions. The nozzles can be advantageously manufactured by extrusion.
Abstract:
The invention relates to nozzles for plasma torches, which are essentially formed from a metal or a metal alloy. Particularly during the operation of such plasma torches for cutting processes using oxygen, an increase in wear occurs on the nozzles, which have to be exchanged with corresponding frequency. It is, therefore, the object of the invention to increase the life of such nozzles. According to the invention, this object is achieved in that wear-resistant microparticles of a hard material, preferably a hard ceramic material, are embedded in the metal or the metal alloy, at least in certain regions. The nozzles can be advantageously manufactured by extrusion.