Abstract:
A method of focus and a focusing apparatus and a detecting module are provided. The detecting module includes an ellipse curved-surface reflection device and a light detector. The ellipse curved-surface reflection device has a beam gate, a first focus and a second focus. A light beam is focused by a light focusing device, and is projected on a surface of an object to be detected through the beam gate. The ellipse curved-surface reflection device reflects the light beams reflected or scattered by the object. The light detector is disposed on the second focus for receiving the light beam reflected by the ellipse curved-surface reflection device to generate a detecting result, by which a distance between the light focusing device and the surface of the object to be detected is adjusted, so that the light beam is correctly focused on the surface of the object.
Abstract:
An optical head for reading an object includes a hollow housing, a light source module, a diffuser structure and a light sensing module. The light source module is fixed in the hollow housing and provides an initial light ray. The diffuser structure is connected the hollow housing, receives the initial light ray, and processes the initial light ray into a uniform light ray for output. The initial light ray is reflected by the diffuser structure multiple times to form the uniform light ray. The light sensing module is fixed in the hollow housing and senses the uniform light ray reflected by the object. An optical axis of the light sensing module is substantially parallel to an axial direction of the diffuser structure.
Abstract:
A reflectance measuring apparatus is provided in the present invention. In addition to measuring the intensity of light directly reflected from a sample, the apparatus is further capable of collecting large-angle reflected light scattered from the sample through a reflecting cover disposed over the sample and measuring the intensity thereof. In one embodiment, the reflecting cover has a parabolic surface for modulating the large-angle reflected light to become parallel light projecting onto a photo-detector. In another embodiment, the reflecting cover has an elliptic surface for modulating the large-angle scattered light to focus on the photo-detector.
Abstract:
A directional interpolation method and device for increasing resolution of an image is disclosed. The device includes an input terminal, a memory, a texture analysis module, a texture variance consistence module and an interpolation module. The input terminal receives signals representing the pixels of the image. The memory stores the pixels in row direction. The texture analysis module obtains a monotone variation area by taking the position as a center. The texture variance consistence module computes all directional texture variances in a closest upper and a closest lower rows of pixels within the monotone variation area in the case of taking the position as a center and accordingly finds two pixels having texture variance consistence. The interpolation module finds a value of pixel to be interpolated to the position through a median filter in accordance with the two pixels and their neighbor pixels.
Abstract:
A semiconductor diode with hydrogen detection capability includes a semiconductor substrate, a doped semiconductor active layer formed on the substrate and made from a compound having the formula XYZ, in which X is a Group III element, Y is another Group III element different from X, and Z is a Group V element, a semiconductor contact-enhancing layer formed on the active layer and made from a compound having the formula MN, in which M is a Group III element, and N is a Group V element, an ohmic contact layer formed on the semiconductor contact-enhancing layer, and a Schottky barrier contact layer formed on the active layer. The Schottky barrier contact layer is made from a metal that is capable of dissociating a hydrogen molecule into hydrogen atoms.
Abstract:
A method for detecting sub-pixel motion for an optical navigation device is disclosed. The method calculates the displacement of the sub-pixel motion according to brightness curve equations of captured images, which is represented by positional coordinates x and y. The detection method includes capturing a first image frame and a second image frame at different times, selecting plural pixels from the first image frame as calculation reference pixels, generating brightness curve equations of the reference pixels, calculating partial-derivatives of the reference pixel to generate a plurality of two-dimensional first-order equations, and calculating the sub-pixel motion according to the plurality of the two-dimensional first-order equations. The method can reduce the pixel noise by choosing reliable pixels as the reference pixels. The method also reduce the noise by classifying the reference pixels.
Abstract:
An organic light emission display module is formed by an organic light emission device panel and a driving circuit board. In manufacturing the organic light emission device panel, electrodes are extended to the edges of the panel. The bonding pads are produced by forming aluminum films. The driving circuit board is made of thin printed circuit board, and bonding pads are manufactured at the edges of the printed circuit board, which are corresponding to the bonding pads of the organic light emission device panel, respectively. The driving circuit board is adhered to the organic light emission device panel, and the each bonding pad of the organic light emission device panel is connected to a respective bonding pad of the driving circuit board. Epoxy resin is filled into the bonding area and gaps between the printed circuit board and the organic light emission device panel.
Abstract:
A liquid-crystal projection display system with higher efficiency is provided. The liquid-crystal projection display system comprises a double-layer square-pillar-like integrator, including an inner layer and an outer layer, having a polarization-separating thin film formed between the inner layer and the outer layer. The system also includes a converging light source for generating light converged at a point near one end surface of the double-layer square-pillar-like integrator, so that most light emitted from the light source enters the double-layer square-pillar-like integrator, and different polarized light is transmitted by being totally reflected off of surfaces of the inner layer and the outer layer respectively. A first lens is provided for forming real light spots on an image plane from virtual light spots formed by totally reflecting the different polarized light transmitted in the double-layer square-pillar-like integrator. A polarization rotator is located at the image plane, for rotating one of the polarizations of the real light spots, while keeping another one of the polarizations unchanged, so that the polarization angles of all the real light spots are identical. A second lens is provided for evenly converging and projecting light beams from the light spots with an identical linear polarization to overlay on an object.
Abstract:
A semiconductor device includes a ZnO thin film. The semiconductor device comprises a substrate and a ZnO thin film. The ZnO thin film includes at least two zones with different carrier types. The current invention also discloses a manufacturing method of a semiconductor device having ZnO thin film. A ZnO thin film doped with dopant is deposited on a substrate. Thereafter, a laser irradiates on the ZnO thin film to activate the dopant in the irradiated zone of the ZnO thin film to change the carrier type.
Abstract:
A method and an apparatus of image dynamic response re-mapping and a digital camera using the same. The apparatus first transforms an original Bayer image data into new transformed image data on a new image coordinate system, and then performs dynamic response re-mapping for the new transformed image data to calculate a gain modulated value. Finally, the apparatus adjusts the original Bayer image data according to the gain modulated value and outputs adjusted Bayer image data with dynamic response re-mapping. Because the apparatus transforms the original Bayer image data into the new transformed image data on the new image coordinate system in advance, it can reduce the bad effect on performing the dynamic response re-mapping on a high-frequency color signal and also keep the color coherence in color processing.