Abstract:
A cured blend of a butyl rubber ionomer, at least one elastomer co-curable with the butyl rubber ionomer and a filler has improved physical and/or dynamic properties, most notably improvements in one or more of green strength, flex fatigue, adhesion and tear strength.
Abstract:
The present invention relates to arborescent polymers and to a process for making same. In one embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with a polymer or copolymer having a low glass transition temperature (Tg), and to a process for making such arborescent polymers. In another embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with less than about 5 weight percent end blocks derived from a polymer or copolymer having a high glass transition temperature (Tg), and to a process for making such arborescent polymers.
Abstract:
The present invention provides an optically transparent peroxide cured article made from a peroxide curable butyl rubber ionomer comprising repeating units derived from the reaction product of one or more multiolefin monomers and at least one nitrogen or phosphorous based nucleophile comprising a pendant vinyl group. A process is also disclosed for making the optically transparent article.
Abstract:
The present invention is directed to the functionalization of butyl rubber ionomer and optionally the grafting of polyamide to halobutyl rubber ionomers. Specifically, disclosed are methods and products resulting therefrom for creating functionalized ionomers and grafting polyamide to halobutyl ionomers via reactive extrusion. The process comprises reacting a halobutyl polymer with at least one nitrogen and/or phosphorous based nucleophile to provide a halobutyl ionomer comprising conjugated diene units; grafting of an amine-reactive dienophile to said ionomer to form a functionalized ionomer; and optionally blending the resulting functionalized ionomer with polyamide.
Abstract:
Surface modification methods based on a combination of plasma and chemical treatments render an unfilled butyl rubber surface highly reactive toward organosilanes, allowing formation of an organosilane self-assembled monolayer (SAM). Plasma oxidation of the butyl rubber surface followed by vapour deposition of SiCl4 produces a hydrophilic surface suitable for anchoring organosilanes. Fabrication of SAMs on this hydrophilic butyl rubber surface with n-octadecyltrichlorosilane (OTS) and trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FOTS) via vapour deposition resulted in a 15% and 25% decrease in gas permeability, respectively, with no change in optical transparency of the butyl rubber.
Abstract:
This invention relates to elastomeric coatings for electronics. Disclosed is a electronic device comprising a substrate layer, a conductive layer and an encapsulant layer. The encapsulant layer comprises at least a butyl rubber material. The butyl rubber encapsulant prevents a change in resistivity of the conductive layer following exposure to nitric acid vapour for 12 hours or hydrochloric acid vapour for 10 hours.
Abstract:
The present invention is directed to a peroxide curable rubber compound containing a butyl rubber polymer, an olefin polymer of ethylene, at least one α-olefin and optionally at least one diene, and a high vinyl polybutadiene polymer. The present invention is also directed to a peroxide curable rubber compound containing a butyl polymer, an EP(D)M rubber polymer, and a 1,2-polybutadiene polymer.
Abstract:
A cured blend of a butyl rubber ionomer, at least one elastomer co-curable with the butyl rubber ionomer and a filler has improved physical and/or dynamic properties, most notably improvements in one or more of green strength, flex fatigue, adhesion and tear strength.
Abstract:
The present invention provides an optically transparent peroxide cured article made from a peroxide curable butyl rubber ionomer comprising repeating units derived from the reaction product of one or more multiolefin monomers and at least one nitrogen or phosphorous based nucleophile comprising a pendant vinyl group. A process is also disclosed for making the optically transparent article.
Abstract:
The present invention relates to arborescent polymers and to a process for making same. In one embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with a polymer or copolymer having a low glass transition temperature (Tg), and to a process for making such arborescent polymers. In another embodiment, the present invention relates to arborescent polymers formed from at least one inimer and at least one isoolefin that have been end-functionalized with less than about 5 weight percent end blocks derived from a polymer or copolymer having a high glass transition temperature (Tg), and to a process for making such arborescent polymers.