Abstract:
An ultrasound imaging system provides dynamic control of a shear wave front used to image viscoelasticity in a biological tissue. The system receives an indication of a region of interest and selects a shear wave front shape. The system also selects, based on the selected shear wave front shape, focus locations for a plurality of push pulses and a sequence for moving a shear wave source among the focus locations. The system transmits a series of push pulses according to the selected sequence, and determines a speed of the shear wave front as it passes through the region of interest. Changes in the speed of the shear wave front are related to changes in stiffness within the tissue.
Abstract:
A method for compensating for inoperative transducer elements in an ultrasound transducer. The transmit voltage of the driving signals applied to transducer elements that are adjacent an inoperative element is increased to compensate for the inoperative element. Preferably, a linear interpolation used whereby the power/gain of the signals to be applied to the inoperative element is divided equally among the adjacent operative elements. If an inoperative transducer element is adjacent more than one inoperative element, then the gain of the operative transducer element is increased accordingly for each such inoperative element. In addition, the gain of the echo signals produced by the adjacent transducer elements is increased to compete for the inoperative element.
Abstract:
A method for receiving Doppler ultra sound signals at a high sample rate, at greater depths and from a large range gate size by increasing the length of time during which echoes can be received with respect to the time required to transmit the Doppler pulses that cause the echo signals to be created. According to a first embodiment of the invention, a Doppler pulse is transmitted for a time equal to the time required for an ultrasonic sound wave to travel from a transducer to a top of a range gate and back. Echo signals created in response to the long Doppler pulse are received for a time equal to the transmit time plus the time required for an ultrasonic sound wave to travel from the top of the range gate to a bottom of the range gate and back to the top of the range gate. In accordance with another aspect of the invention, each transducer element transmits a phase-shifted Doppler pulse, wherein the phase-shift is selected according to the time required for an ultrasonic sound wave to travel from the transducer element to a desired focal point. By simultaneously transmitting the phase-shifted Doppler pulses, the pulses arrive at different times at the focal point and constructively add. Echo signals created in response to the sum of the phase-shifted Doppler pulses can be sampled at substantially any rate to analyze the moving blood flow in the area of tissue defined by a range gat.
Abstract:
A two-dimensional array allows rapid three-dimensional ultrasound scanning. A high volume-per-second scan rate using a limited number of system channels (e.g. 192, 256 or other number of channels) is provided by a transducer array without beamforming circuitry in the probe. A fan beam of acoustic energy is transmitted along a scan plane from transducer elements that extend lengthwise over a substantial portion of the lateral aperture. Rows of these long transmit elements are provided along the elevation aperture for electronic steering of the fan beam in the elevation dimension. One or more rows of smaller receive elements are used for forming beams each representing a scan line along the lateral dimension in response to each transmission of a fan beam. Elevation resolution is provided primarily from the elevationally spaced transmit elements and partially from two or more rows of laterally spaced receive elements. The lateral resolution is responsive to the lateral spacing of the receive elements.
Abstract:
Methods are described for parallel beamforming with beam combination of formed beams from different transmit beams in an ultrasound imaging system. The methods provide advantages because the combination of receive beams that are produced from different transmit beams enables the production of an ultrasonic image at faster frame rates that does not suffer from the image quality degradation normally associated with parallel beamforming, and does not require process intensive interpolation.
Abstract:
An ultrasound system creates ultrasound images at faster frame rate by eliminating ultrasonic transmissions along every beam line. Preferably, ultrasound images are created by alternately transmitting ultrasonic signals on the even and odd transmit beam lines. Parallel beam forming is used where transmissions along a single transmit beam line create echo signals on a pair of receive beam lines. To eliminate the artifact caused by the round-trip beam line sensitivities, echo signals created in response to transmissions along the even transmit beam lines are averaged with echo signals created in response to transmissions on the odd transmit beam lines. The averaged echo signals are used to create an ultrasound image without artifacts.
Abstract:
An ultrasound system (50) estimates the speed of sound in the tissue (60) under examination. The ultrasound system obtains a series of test images (150) using different estimates of the speed of sound in the body tissue. For each image produced, the ultrasound system computes a function that is indicative of image quality for one or more regions of interest (152) in the test image. The image quality function exhibits a minimum or maximum when computed for a region of interest obtained at a speed of sound substantially equal to a true speed of sound in the tissue. The ultrasound system selects the test image having the minimum or maximum function value and obtains subsequent images of the tissue using the speed of sound used to obtain the test image selected.
Abstract:
This invention addresses the aliasing and range ambiguity artifact trade-off occurring in pulsed doppler ultrasound applications. By increasing pulse repetition frequency to avoid aliasing and by implementing non-coinciding transmit and receive beam-patterns, range ambiguity effects are reduced. Separate transmit and receive apertures define respective transmit and receive beam-patterns. These separate transmit and receive beam-patterns intersect at a primary range gate. Secondary range gates may occur along the receive beam-pattern. The transmit beam-pattern does not intersect such secondary gates. Weaker dispersed ultrasound energy may intersect the secondary gates, however, and reflect back to the receive aperture. Relatively stronger samples are obtained from the primary range gate than from the secondary range gates. In effect the geometry of the transmit and receive beam-patterns maximizes the strength of the response from the primary gate and reduces the strength of the response from the secondary gates.
Abstract:
A system for controlling the point spread function of an ultrasound signal transmitted into a patient. In accordance with one embodiment of the invention, only a selected number of the transducer elements transmit a transmit pulse. The elements which do not transmit the pulse are selected in accordance with an apodization probability density function. In accordance with another aspect of the present invention, each transducer element transmits a variable portion of a transmit pulse in order to control the acoustic power of the signal transmitted from each element.
Abstract:
A method for increasing the valid data points produced by a digital filter. Input data is applied to a pair of filters that produce transients in response to different input data values. Output data from each of the filters is then combined to produce a data set with no transients. In one embodiment, the pair of filters have the same impulse response but the input data is applied to one filter in a first direction and to the other filter in an opposite direction. In another embodiment, the input data is applied to both filters in the same direction but the filters have inverted impulse responses. The present invention is particularly useful for minimizing a gap created when an ultrasound system alternates between different imaging modes. In addition, the present invention, can be used to increase the number of valid data points that are analyzed during color flow ultrasound imaging.