Abstract:
A heat exchanger includes headers and tubes two ends of each of which are connected with and communicate the headers. Each of fins is disposed between adjacent tubes. An end cover is formed with a center hole and fixed to a proximal end of one of the headers. A distal end of a sleeve passes through the center hole to extend into the header, and a proximal end of the sleeve is held by a proximal end surface of the end cover. A first distribution-collection tube is fixed to the sleeve and defines an open proximal end and a closed distal end passing through the sleeve to extend into the header in which openings are formed along a longitudinal direction of the distribution-collection tube in a portion thereof extended into the header. A fixing nut is screwed onto the end cover to press the proximal end of the sleeve against the proximal end surface of the end cover.
Abstract:
A method for manufacturing a refrigerant guide tube of a heat exchanger and a refrigerant guide tube manufactured using the method and a heat exchanger with the refrigerant guide tube are disclosed. The refrigerant guide tube includes tube body and channels extending through a wall of the tube body. The tube body is formed by a butt joint of side edges of more than one bar-shaped plate materials along the length direction. The method allows forming the refrigerant channels of the guide tube before or during forming the tube body when the method is used to manufacture the guide tube, so as to avoid directly forming the channels on the tube body and make the process of manufacture the guide tube simpler and more convenient.
Abstract:
A baffle and a heat exchanger with the baffle are provided. The baffle is disposed inside a header pipe of the heat exchanger, and divides the header pipe into two sections along the axial direction. The baffle supports a refrigerant duct which is set inside the header pipe along the axial direction. The baffle is a split type, and includes a first baffle member and a second baffle member connected together via an engagement structure. The installation efficiency of the baffle and the installation quality of the refrigerant duct are enhanced, and the reliability of the heat exchanger is also improved.
Abstract:
A heat exchanger includes first and second headers; a plurality of tubes each defining two ends connected to the first and second headers respectively. Each tube includes a bent segment and straight segments connected to first and second ends of the bent segment respectively, the bent segment being twisted relative to the straight segments. A plurality of fins are interposed between adjacent straight segments. A length of the bent segment before bending satisfies a formula: 5tπ(180−θ)/180+2Tw≦A≦30tπ(180−θ)/180+8Tw, where: A is the length of the bent segment before bending, t is a wall thickness of the tube, Tw is a width of the tube, θ is an intersection angle between the straight segments of the tube, and π is circumference ratio. The heat exchanger of embodiments of the present invention is easy to bend and convenient to manufacture without reducing the heat exchange efficiency.
Abstract:
A heat exchanger comprises first and second headers; a plurality of tubes each defining two ends connected to the first and second headers respectively. Each tube comprises a bent segment and straight segments connected to first and second ends of the bent segment respectively, the bent segment being twisted relative to the straight segments. A plurality of fins are interposed between adjacent straight segments. A length of the bent segment before bending satisfies a formula: 5tπ(180−θ)/180+2Tw≦A≦30tπ(180−θ)/180+8Tw , where: A is the length of the bent segment before bending, t is a wall thickness of the tube, Tw is a width of the tube, θ is an intersection angle between the straight segments of the tube, and π is circumference ratio. The heat exchanger of embodiments of the present invention is easy to bend and convenient to manufacture without reducing the heat exchange efficiency.
Abstract:
A heat-exchange device comprises a first heat exchanger defining an upper end and a lower end. A second heat exchanger defines an upper end connected to the upper end of the first heat exchanger and a lower end spaced apart from the lower end of the first heat exchanger in a substantially longitudinal direction such that a predetermined angle between the first heat exchanger and second heat exchanger is between about 0 and 180°. A wind-guide member is disposed between the first heat exchanger and second heat exchanger for guiding wind toward the first heat exchanger and second heat exchanger.
Abstract:
A heat-exchange device comprises a first heat exchanger defining an upper end and a lower end. A second heat exchanger defines an upper end connected to the upper end of the first heat exchanger and a lower end spaced apart from the lower end of the first heat exchanger in a substantially longitudinal direction such that a predetermined angle between the first heat exchanger and second heat exchanger is between about 0 and 180°. A wind-guide member is disposed between the first heat exchanger and second heat exchanger for guiding wind toward the first heat exchanger and second heat exchanger.
Abstract:
A corrugated fin includes connection segments each of which is formed with louvers. Substantially circular arc segments are connected with the connection segments alternatively in a substantially longitudinal direction such that corrugations are formed and the arc segments form respective crests and troughs of the corrugations. 0≦H2≦(H1−2R+2R sin β)/cos β, in which “H2” is a length of the corresponding louver, “H1” is a height of the fin, “R” is a radius of the corresponding arc segment, and “β” is an angle of inclination of the corresponding connection segment. A heat exchanger includes a first header, a second header spaced apart from the first header, and tubes spaced apart from each other and each of which is connected between the first and second headers in fluid communication therewith. Fins are each disposed between adjacent tubes.
Abstract:
A fin includes straight segments and substantially circular arc segments connected with the straight segments in turn along a longitudinal direction such that the arc segments form respective wave crests and wave troughs of the fin. The fin is divided in a lateral direction into first and second end portions and an intermediate portion between the first and second end portions. Each arc segment at least forming the wave troughs in the first end portion is separated from the respective arc segment of the corresponding intermediate portion via a longitudinal slot. A top of each arc segment at least forming the wave troughs in the first end portion is formed with a lateral slot along the lateral direction such that each arc segment at least forming the wave troughs in the first end portion is divided into first and second straight portions separated from each other.
Abstract:
A method for manufacturing a refrigerant guide tube of a heat exchanger and a refrigerant guide tube manufactured using the method and a heat exchanger with the refrigerant guide tube are disclosed. The refrigerant guide tube includes tube body and channels extending through a wall of the tube body. The tube body is formed by a butt joint of side edges of more than one bar-shaped plate materials along the length direction. The method allows forming the refrigerant channels of the guide tube before or during forming the tube body when the method is used to manufacture the guide tube, so as to avoid directly forming the channels on the tube body and make the process of manufacture the guide tube simpler and more convenient.