Abstract:
This invention encompasses embodiments for multi-modal integrated simultaneous measurement of various aspects of fluids contained in circulating systems such as automotive reciprocating engines and vehicle transmissions. These circulating systems perform constant internal lubrication, and heat and contaminant removal to protect the internal moving parts from the inherent friction and damage in normal operation. Most commonly this is achieved with fluids based on hydrocarbon and/or related synthetics, which, over time, can lose their protective properties, and vary in their performance or breakdown/decay due to internal and external events. Several components within the lubricant fluid can be measured and can provide insight into the efficacy of the system to perform its designed mission. Described herein is a real-time, simultaneous, integrated, multi-modal sensor system for early warning notification that can be further enhanced using specifically designed nanoparticles that can be introduced into the system, engineered to specifically bind with the contaminants and/or undergo an irreversible state change upon certain experienced conditions to both increase the detectability as well as provide for a framework to improve filter performance.
Abstract:
This invention relates to analyzing elements, including metals in mechanical systems. The invention therefore allows for detecting wear elements, such as metals, for example, in lubricants to determine whether the mechanical system is deteriorating, or even approaching failure. The invention relates to an integrated micro-electromechanical (MEMS) apparatus, and methods for using this apparatus.
Abstract:
This invention encompasses embodiments for multi-modal integrated simultaneous measurement of various aspects of fluids contained in circulating systems such as automotive reciprocating engines and vehicle transmissions. These circulating systems perform constant internal lubrication, and heat and contaminant removal to protect the internal moving parts from the inherent friction and damage in normal operation. Most commonly this is achieved with fluids based on hydrocarbon and/or related synthetics, which, over time, can lose their protective properties, and vary in their performance or breakdown/decay due to internal and external events. Several components within the lubricant fluid can be measured and can provide insight into the efficacy of the system to perform its designed mission. Described herein is a real-time, simultaneous, integrated, multi-modal sensor system for early warning notification.
Abstract:
This invention encompasses embodiments for multi-modal integrated simultaneous measurement of various aspects of fluids contained in circulating systems such as automotive reciprocating engines and vehicle transmissions. These circulating systems perform constant internal lubrication, and heat and contaminant removal to protect the internal moving parts from the inherent friction and damage in normal operation. Most commonly this is achieved with fluids based on hydrocarbon and/or related synthetics, which, over time, can lose their protective properties, and vary in their performance or breakdown/decay due to internal and external events. Several components within the lubricant fluid can be measured and can provide insight into the efficacy of the system to perform its designed mission. Described herein is a real-time, simultaneous, integrated, multi-modal sensor system for early warning notification that can be further enhanced using specifically designed nanoparticles that can be introduced into the system, engineered to specifically bind with the contaminants and/or undergo an irreversible state change upon certain experienced conditions to both increase the detectability as well as provide for a framework to improve filter performance.
Abstract:
This invention encompasses embodiments for multi-modal integrated simultaneous measurement of various aspects of fluids contained in circulating systems such as automotive reciprocating engines and vehicle transmissions. These circulating systems perform constant internal lubrication, and heat and contaminant removal to protect the internal moving parts from the inherent friction and damage in normal operation. Most commonly this is achieved with fluids based on hydrocarbon and/or related synthetics, which, over time, can lose their protective properties, and vary in their performance or breakdown/decay due to internal and external events. Several components within the lubricant fluid can be measured and can provide insight into the efficacy of the system to perform its designed mission. Described herein is a real-time, simultaneous, integrated, multi-modal sensor system for early warning notification that can be further enhanced using specifically designed nanoparticles that can be introduced into the system, engineered to specifically bind with the contaminants and/or undergo an irreversible state change upon certain experienced conditions to both increase the detectability as well as provide for a framework to improve filter performance.
Abstract:
The present application relates to systems for detection of partial discharges in a power transformer. In embodiments, the systems utilize fiber optic acoustic sensors to monitor the pressure waves associated with partial discharges and localize the discharges using appropriate measurement and analysis software.
Abstract:
This invention encompasses embodiments for multi-modal integrated simultaneous measurement of various aspects of fluids contained in circulating systems such as automotive reciprocating engines and vehicle transmissions. These circulating systems perform constant internal lubrication, and heat and contaminant removal to protect the internal moving parts from the inherent friction and damage in normal operation. Most commonly this is achieved with fluids based on hydrocarbon and/or related synthetics, which, over time, can lose their protective properties, and vary in their performance or breakdown/decay due to internal and external events. Several components within the lubricant fluid can be measured and can provide insight into the efficacy of the system to perform its designed mission. Described herein is a real-time, simultaneous, integrated, multi-modal sensor system for early warning notification that can be further enhanced using specifically designed nanoparticles that can be introduced into the system, engineered to specifically bind with the contaminants and/or undergo an irreversible state change upon certain experienced conditions to both increase the detectability as well as provide for a framework to improve filter performance.
Abstract:
This invention encompasses embodiments for multi-modal integrated simultaneous measurement of various aspects of fluids contained in circulating systems such as automotive reciprocating engines and vehicle transmissions. These circulating systems perform constant internal lubrication, and heat and contaminant removal to protect the internal moving parts from the inherent friction and damage in normal operation. Most commonly this is achieved with fluids based on hydrocarbon and/or related synthetics, which, over time, can lose their protective properties, and vary in their performance or breakdown/decay due to internal and external events. Several components within the lubricant fluid can be measured and can provide insight into the efficacy of the system to perform its designed mission. Described herein is a real-time, simultaneous, integrated, multi-modal sensor system for early warning notification that can be further enhanced using specifically designed nanoparticles that can be introduced into the system, engineered to specifically bind with the contaminants and/or undergo an irreversible state change upon certain experienced conditions to both increase the detectability as well as provide for a framework to improve filter performance.
Abstract:
The invention encompasses a system and method for monitoring a power line. In certain embodiments, a system emits a series of signals that allow for analytic analysis of a power line. For example, by taking multiple signal readings, it is possible to detect an average height reading of a power line and observe long-term trends in the time delay from signal emission to reception of an echo-signal. This allows for accurate measurement of various physical parameters of a power line, for example, the height of the power line above the ground.
Abstract:
The invention encompasses a system and method for monitoring a power line. In certain embodiments, a system emits a series of signals that allow for analytic analysis of a power line. For example, by taking multiple signal readings, it is possible to detect an average height reading of a power line and observe long-term trends in the time delay from signal emission to reception of an echo-signal. This allows for accurate measurement of various physical parameters of a power line, for example, the height of the power line above the ground.