Abstract:
A transparent conductive film includes a number of first transparent conductive stripes extending along a first direction and a number of second transparent conductive stripes extending along a second direction and intersecting the number of first transparent conductive stripes. The first conductive stripes are spaced from each other and extend substantially along a first direction. The second transparent conductive stripes are spaced from each other and extend substantially along a second direction. The first transparent conductive stripes are electrically connected with the second transparent conductive stripes. The first transparent conductive stripes and the second conductive stripes are arranged in patterns such that the transparent conductive film has an anisotropic impedance. The first direction is a low impedance direction. A resistivity of the transparent conductive film in the low impedance direction is smaller than the resistivity of the transparent conductive film in the second direction and any other direction.
Abstract:
A transparent conductive film includes at least one continuous transparent conductive layer and a number of transparent conductive stripes spaced from each other and extending substantially along a low impedance direction. The transparent conductive stripes are disposed on and electrically contact a surface of the at least one transparent conductive layer. A resistivity of the transparent conductive film in the low impedance direction is less than the resistivity in any other direction. A touch panel includes the transparent conductive film.
Abstract:
A tri-gate pixel structure includes three sub-pixel regions, three gate lines, a data line, three thin film transistors (TFTs), three pixel electrodes, and a common line. The gate lines are disposed along a first direction, and the data line is disposed along a second direction. The TFTs are disposed in the sub-pixel regions respectively, wherein each TFT has a gate electrode electrically connected to a corresponding gate line, a source electrode electrically connected to the data line, and a drain electrode. The three pixel electrodes are disposed in the three sub-pixel regions respectively, and each pixel electrode is electrically connected to the drain electrode of one TFT respectively. The common line crosses the gate lines and partially overlaps the three gate lines, and the common line and the three pixel electrodes are partially overlapped to respectively form three storage capacitors.
Abstract:
A display device and method having a sensing function is described. The device includes a liquid crystal display (LCD) panel and plural sense lines. The LCD panel includes a plurality of data lines and a plurality of gate lines. Each of the data lines is connected electrically to a plurality of left pixels and a plurality of right pixels. The sense line is disposed between each two adjacent data lines, and each of the sense lines is configured to be parallel to the data lines and perpendicular to the gate lines. The sense lines are used to transmit touch signals.
Abstract:
A liquid crystal display is provided. A liquid crystal display includes a first substrate having color filters therewith; a second substrate having plural first signal lines and plural second signal lines thereon; plural first openings located at intersections of said first signal lines and plural of second signal lines; and plural supports located at said plural first openings and between said first substrate and said second substrate, and separating said first substrate from said second substrate.
Abstract:
A liquid crystal display panel having a display area comprises a first substrate, a second substrate, a sealant, a liquid crystal layer, and a light-shielding layer. The sealant is disposed between the first substrate and the second substrate. The liquid crystal layer is disposed in a space defined by the first substrate, the second substrate and the sealant. The light shielding layer is disposed on a first outer surface of the first substrate or a second outer surface of the second substrate, wherein the light shielding layer and the display area are not overlapped. In addition, the liquid crystal display panel further comprises a protection layer. Since the protection layer encapsulates the light-shielding layer, out-diffusion of dye within the light-shielding layer is effectively prevented.
Abstract:
A liquid crystal display is provided. A liquid crystal display includes a first substrate having color filters therewith; a second substrate having plural first signal lines and plural second signal lines thereon; plural first openings located at intersections of said first signal lines and plural of second signal lines; and plural supports located at said plural first openings and between said first substrate and said second substrate, and separating said first substrate from said second substrate.
Abstract:
An adjustable antenna bracket has an antenna bracket, a stanchion bracket, a connector panel and multiple fasteners. The antenna bracket has a fixed board with multiple circular assembled curved slots and the fixed board is combined with the antenna bracket. The stanchion bracket has a connecting board, two elevation boards and two adjusting boards. Each adjusted board has multiple adjusted slots. The connector panel is mounted on the antenna bracket at a side opposite to the stanchion bracket. The fasteners extend through the connector panel, the curved slots in the antenna disk and the adjusting slots in the adjusting boards to combine the connector panel, the antenna disk and the stanchion bracket together. Accordingly, an adjustable antenna bracket with two rotation stages is provided.
Abstract:
An adjustable antenna bracket has an antenna bracket, a stanchion bracket, a connector panel and multiple fasteners. The antenna bracket has a fixed board with multiple circular assembled curved slots and the fixed board is combined with the antenna bracket. The stanchion bracket has a connecting board, two elevation boards and two adjusting boards. Each adjusted board has multiple adjusted slots. The connector panel is mounted on the antenna bracket at a side opposite to the stanchion bracket. The fasteners extend through the connector panel, the curved slots in the antenna disk and the adjusting slots in the adjusting boards to combine the connector panel, the antenna disk and the stanchion bracket together. Accordingly, an adjustable antenna bracket with two rotation stages is provided.
Abstract:
The present invention provides a method to prevent an ITO from opening. A dummy material layer with tapered edges is formed on a substrate. A first insulating layer is formed on the dummy material layer. Then a metal layer is formed on the first insulating layer, wherein one edge of the metal layer corresponds to any part of one of the tapered edges of the dummy material layer and the other tapered edge is situated away from the metal layer. After a second insulating layer is formed on the metal layer, an ITO layer is formed thereon without opening.