Abstract:
Aerogel-based thermal management systems and methods for vehicles incorporate aerogel materials to provide insulation and heat shielding. Various components of a vehicle must be protected from high temperatures, and conventional insulation undesirably adds weight and mass to the vehicle. Aerogel materials can be used for heat insulation and heat shielding while consuming minimal space and weight in the vehicle. The aerogel materials can be provided in monolithic or fiber-reinforced composite form, and can be enclosed in an encapsulating material such as a polymer, elastomer, or metal. The aerogel material is then attached on or near an automobile component.
Abstract:
A lightweight and compact super-insulation system that is also capable of supporting a high level of compressive load. The system utilizes spacers to provide structural support and utilize controlled buckling of a thin protective outer skin supported by spacers to form strong catenary surfaces to protect insulation material underneath. The spacers may comprise an aerogel, or an aerogel may provide insulation separate from the spacer yet contained within the thin outer skin.
Abstract:
A lightweight and compact super-insulation system that is also capable of supporting a high level of compressive load is described. The system utilizes spacers to provide structural support and utilize controlled buckling of a thin protective outer skin supported by spacers to form strong catenary surfaces to protect insulation material underneath. The spacers may comprise an aerogel, or an aerogel may provide insulation separate from the spacer yet contained within the thin outer skin. The system will be useful for thermal management of variety of deep underwater structures such as pipe-in-pipe apparatus, risers or subsea trees for ultra-deep water oil-and-gas exploration.
Abstract:
A lightweight and compact super-insulation system that is also capable of supporting a high level of compressive load is described. The system utilizes spacers to provide structural support and utilize controlled buckling of a thin protective outer skin supported by spacers to form strong catenary surfaces to protect insulation material underneath. The spacers may comprise an aerogel, or an aerogel may provide insulation separate from the spacer yet contained within the thin outer skin. The system will be useful for thermal management of variety of deep underwater structures such as pipe-in-pipe apparatus, risers or subsea trees for ultra-deep water oil-and-gas exploration.
Abstract:
Embodiments of the present invention describe an aerogel composite and method for preparing the same. The aerogel composite comprises an aerogel material; a fibrous structure interpenetrating with said aerogel material; and a coating comprising a polymeric material disposed about at least one surface of said aerogel material.
Abstract:
Many types of aerogel materials may be coated with polyorganosiloxane based coating compositions. Several such compositions, coating methods and additional ingredients are described. Such coatings add strength and increase the ability to use such aerogel materials in rugged environments. Various compositions include polyorganosiloxane components, crosslinkers, catalysts, optional fillers and other compounds.