Abstract:
A method of manufacturing waterproof apertured materials or surfaces using nanoparticle hydrophobic compositions and treatments, and preferably superhydrophobic compositions and treatments, wherein apertures of a size that would normally render the surface or material water-permeable may be provided in the surface or material. The method comprises determining the extent of the hydrophobic field that extends beyond the physical edge of a particular treated intersecting member interwoven to form the material to determine the allowable size of an aperture, such that the extended hydrophobic field present on the intersecting members surrounding an aperture will be sufficient to prevent surface wetting and water permeability by fully overlapping the aperture or by presenting a reduced area effective aperture that precludes passage of water.
Abstract:
A method of manufacturing waterproof apertured materials or surfaces using nanoparticle hydrophobic compositions and treatments, and preferably superhydrophobic compositions and treatments, wherein apertures of a size that would normally render the surface or material water-permeable may be provided in the surface or material. The method comprises determining the extent of the hydrophobic field that extends beyond the physical edge of a particular treated intersecting member interwoven to form the material to determine the allowable size of an aperture, such that the extended hydrophobic field present on the intersecting members surrounding an aperture will be sufficient to prevent surface wetting and water permeability by fully overlapping the aperture or by presenting a reduced area effective aperture that precludes passage of water. In certain embodiments, the apertured material is provided with a liquid impermeable backing layer.