Abstract:
Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
A transparent conductor includes a film of a conductive ceramic. Additives are at least partially incorporated into the film. The additives are at least one of electrically conductive and semiconducting, and at least one of the additives has an aspect ratio of at least 3.
Abstract:
Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment of the present invention, a method is described comprising of providing a first material comprising an alloy of a) a group IIIA-based material and b) at least one other material. The material may be included in an amount sufficient so that no liquid phase of the alloy is present within the first material in a temperature range between room temperature and a deposition or pre-deposition temperature higher than room temperature, wherein the group IIIA-based material is otherwise liquid in that temperature range. The other material may be a group IA material. A precursor material may be formulated comprising a) particles of the first material and b) particles containing at least one element from the group consisting of: group IB, IIIA, VIA element, alloys containing any of the foregoing elements, or combinations thereof. The temperature range described above may be between about 20° C. and about 200° C. It should be understood that the alloy may have a higher melting temperature than a melting temperature of the IIIA-based material in elemental form.
Abstract:
CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group IB and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stochiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
Abstract:
Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment of the present invention, a method is described comprising of providing a first material comprising an alloy of a) a group IIIA-based material and b) at least one other material. The material may be included in an amount sufficient so that no liquid phase of the alloy is present within the first material in a temperature range between room temperature and a deposition or pre-deposition temperature higher than room temperature, wherein the group IIIA-based material is otherwise liquid in that temperature range. The other material may be a group IA material. A precursor material may be formulated comprising a) particles of the first material and b) particles containing at least one element from the group consisting of: group IB, IIIA, VIA element, alloys containing any of the foregoing elements, or combinations thereof. The temperature range described above may be between about 20° C. and about 200° C. It should be understood that the alloy may have a higher melting temperature than a melting temperature of the IIIA-based material in elemental form.
Abstract:
Materials and devices are provided for high-throughput printing of nanostructured semiconductor precursor layer. In one embodiment, a material is provided that comprises of a plurality of microflakes having a material composition containing at least one element from Groups IB, IIIA, and/or VIA. The microflakes may be created by milling precursor particles characterized by a precursor composition that provides sufficient malleability to form a planar shape from a non-planar starting shape when milled, and wherein overall amounts of elements from Groups IB, IIIA and/or VIA contained in the precursor particles combined are at a desired stoichiometric ratio of the elements. It should also be understood that other flakes such as but not limited to nanoflakes may also be used to form the precursor material.
Abstract:
Methods and devices are provided for forming thin-films from solid group IIIA-based particles. In one embodiment of the present invention, a method is described comprising of providing a first material comprising an alloy of a) a group IIIA-based material and b) at least one other material. The material may be included in an amount sufficient so that no liquid phase of the alloy is present within the first material in a temperature range between room temperature and a deposition or pre-deposition temperature higher than room temperature, wherein the group IIIA-based material is otherwise liquid in that temperature range. The other material may be a group IA material. A precursor material may be formulated comprising a) particles of the first material and b) particles containing at least one element from the group consisting of: group IB, IIIA, VIA element, alloys containing any of the foregoing elements, or combinations thereof. The temperature range described above may be between about 20° C. and about 200° C. It should be understood that the alloy may have a higher melting temperature than a melting temperature of the IIIA-based material in elemental form.
Abstract:
Methods and devices are provided for transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after selective forces settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be nanoflakes that have a high aspect ratio. The resulting dense films formed from nanoflakes are particularly useful in forming photovoltaic devices.
Abstract:
A high-throughput method of forming a semiconductor precursor layer by use of a chalcogen-rich chalcogenides is disclosed. The method comprises forming a precursor material comprising group IB-chalcogenide and/or group IIIA-chalcogenide particles, wherein an overall amount of chalcogen in the particles relative to an overall amount of chalcogen in a group IB-IIIA-chalcogenide film created from the precursor material, is at a ratio that provides an excess amount of chalcogen in the precursor material. The excess amount of chalcogen assumes a liquid form and acts as a flux to improve intermixing of elements to form the group IB-IIIA-chalcogenide film at a desired stoichiometric ratio, wherein the excess amount of chalcogen in the precursor material is an amount greater than or equal to a stoichiometric amount found in the IB-IIIA-chalcogenide film.