Abstract:
An anti-breaking structure of an end closure of a heat pipe is formed at a tapered end of the heat pipe, and a soldering joint is formed at an upper end of the anti-breaking structure. The anti-breaking structure includes an uneven rib coupled longitudinally between the tapered end and the soldering joint, and two wing portions extended outward from the left and right outer sides of the uneven rib, and one surface of the uneven rib is convex and another backside surface of the uneven rib is concave, and both uneven rib and wing portions are formed by pressing the heat pipe to constitute the anti-breaking structure.
Abstract:
An assembled structure of a large-sized LED lamp includes a substrate. One surface of the substrate is provided with a plurality of LED modules. Each LED module comprises a circuit board and a plurality of LEDs fixedly connected to the circuit board. A lamp mask is locked onto the substrate to cover and protect the LED modules. A sealing material is provided between the lamp mask and the substrate to protect the permeation of liquid. Further, at the positions of the other surface of the substrate, heat-dissipating modules are provided to correspond to each LED module, respectively. The heat-dissipating modules are used to dissipate heat generated from the LEDs. A lamp cover is covered to the exterior of the heat-dissipating modules. The lamp cover is locked onto the substrate. With the modulization of each constituent element, the detachment, assembly and repair of the present invention can be much simpler and more convenient.
Abstract:
An air-guiding structure for a heat-dissipating fin is manufactured by providing plural sets of air-guiding portions on each heat-dissipating fin. Each air-guiding-portion includes a plurality of thorns made by stamping. The thorns are arranged non-linearly and oriented to face the inlet or the outlet for external cooling air. With the above arrangement, when the external cooling air enters the inlet of the heat-dissipating fin and passes through the flowing path, as soon as contacting with the thorns of the air-guiding portion, the cooling air is hindered to form a three-dimensional turbulent flow on the heat-dissipating fin. As a result, the duration within which the cooling air stays in the heat-dissipating fin can be extended to efficiently carry the heat source out of the heat-dissipating fins, thereby to improve the efficiency in heat dissipation.
Abstract:
A method for manufacturing a heat pipe having an enlarged portion includes the steps of: preparing a hollow tubular material having a uniform outer diameter; forming the tubular material with an enlarged portion having a different or larger outer diameter by narrowing or enlarging the tubular material; arranging a capillary structure into the tubular material; filling a working fluid into the tubular material after sealing one end of the tubular material; sealing the end to form a heat pipe after performing a degassing operation; and pressing the enlarged portion obtained in the previous step to form a flattened enlarged portion on the heat pipe.
Abstract:
A heat sink is heat sinkdisposed facing the air output of a fan. A concave portion is formed on the heat sink facing the fan. The air flow generated from the fan encounters the concave portion of the heat sink. The concave portion can evenly distribute the air speed flowing from the fan to enhance the cooling effect.
Abstract:
The heat sink fastener includes a heat conductive board and a flexible metallic wire. The heat conductive board has a pair of pivot portions. The flexible metallic wire has a pair of flexible arms and a middle portion connecting therebetween. Each flexible arm connects to the pivot portion. The pivot portion side of the heat conductive board is formed with a blocking sheet. The middle portion is provided with a bend for being blocked by the blocking sheet. When the flexible metallic wire is hooked to a ring on a circuit board, it will generate pressure to the heat conductive board resulting from the bent flexible arms and the blocked middle portion.
Abstract:
An anti-breaking structure of an end closure of a heat pipe is formed at a tapered end of the heat pipe, and a soldering joint is formed at an upper end of the anti-breaking structure. The anti-breaking structure includes an uneven rib coupled longitudinally between the tapered end and the soldering joint, and two wing portions extended outward from the left and right outer sides of the uneven rib, and one surface of the uneven rib is convex and another backside surface of the uneven rib is concave, and both uneven rib and wing portions are formed by pressing the heat pipe to constitute the anti-breaking structure.
Abstract:
The present invention is directed to a LED lamp and the heat-dissipating structure thereof. The heat-dissipating structure is used to dissipate the heat generated by the LED and comprises a first heat-dissipating body and a second heat-dissipating body. The first heat-dissipating body has a casing with an opening formed thereon. The second heat-dissipating body is connected on the first heat-dissipating body and comprises at least one heat pipe and a plurality of heat-dissipating fins connected to the heat pipe. With this arrangement, the LED continuously operates under a suitable working temperature and the life of the LED can thus be prolonged.
Abstract:
An integral heat dissipating device includes a radiating plate, a fan blade and a cover. The radiating plate has a heat dissipating channel. A fan blade receiving chamber is communicated with the heat dissipating channel and a heat conductive plate is connected to the bottom of the outer wall of the heat dissipating channel. The bottom of the fan blade receiving chamber is installed with an axial hole which serves to be installed with a fan blade. The axial hole can be installed with a fan blade with power. An inclined surface is formed at the upper side of the fan blade receiving chamber. A plate shape heat tube is welded between the heat conductive plate and the bottom of the heat dissipating channel. A plurality of screw retaining posts capable of being screwedly fixed to a circuit board being suspended from the lateral side of the heat conductive plate. The cover is a thin plate with a hole for sealing the upper side of the heat dissipating channel and the fan blade receiving chamber. The hole is placed above the fan blade receiving chamber for being formed as a tilt wind opening. In the present invention, the radiating plate is made integrally and can be directly connected to the fan. The shape of the heat conductive plate may include with a heat dissipating element as required. The heat conductive glue adheres to a heat conductive medium for achieving the object of high heat dissipation and low cost.
Abstract:
A heat dissipating structure for a portable electronic device which includes a heat generating electronic member. The heat dissipating structure includes a base, a first heat pipe, a heat conducting sleeve, and a second heat pipe. The base is mounted on the heat generating electronic member. The base includes a through groove defined therein. One end of the first heat pipe is received in the through groove. The heat conducting sleeve includes a through hole defined therein. The through hole is configured for pivotably connecting the other end of the first heat pipe. One end of the coaxially joining with the first heating pipe in the heat conducting sleeve. The base is configured for conducting heat generated by the heat generating electronic member to the first heat pipe. It is advantageous that the heat dissipating structured can be mounted in limited space.