Abstract:
A developing apparatus includes an electrostatic latent image bearer, a developing sleeve, a case, and an air filter. The case accommodates a two-component developer and the developing sleeve. The air filter is attached to the case. The air filter has a thickness of 2 to 20 mm and has a density gradient with a pressure loss of 2 to 40 Pa at a wind speed of 10 cm/s. The air filter forms an airflow sucked into the case from a gap between the developing sleeve and the case and forms an airflow discharged from the case through the air filter. The two-component developer accommodated in the case contains a magnetic particle a surface of which is coated with a resin layer. The resin layer contains at least one type of chargeable particle.
Abstract:
A carrier for developing an electrostatic latent image is provided. The carrier comprises a core particle having an internal void ratio of from 0.0% to 2.0% and a coating layer coating the core particle. The coating layer contains flat chargeable particles satisfying Formula 1 blow: 1.0≤R1/R2≤3.0 Formula 1 where R1 [nm] and R2 [nm] represent a major axis and a thickness, respectively, of each of the flat chargeable particles. The carrier has an apparent density of from 2.0 to 2.5 g/cm3.
Abstract:
An image forming apparatus is provided that includes: first and second electrostatic latent image bearers; first and second electrostatic latent image forming devices; first and second developing devices configured to develop first and second electrostatic latent images with a colored toner and a special-color toner to form a colored toner image and a special-color toner image, respectively; a primary transfer device configured to transfer the colored toner image and the special-color toner image onto an intermediate image bearer in an overlapping manner to form a composite toner image; a secondary transfer device configured to transfer the composite toner image onto a recording medium; and a fixing device configured to fix the composite toner image thereon. The special-color toner comprises plate-like and/or film-like pigments. An absolute difference in volume resistivity between the special-color toner and the colored toner is 0.30 log Ω cm or less.
Abstract:
An image forming method is provided. The method includes the steps of forming an electrostatic latent image on a photoconductor; developing the electrostatic latent image into a toner image with a toner; transferring the toner image onto a recording medium having a smoothness of 20 s or less; and fixing the toner image on the recording medium. The toner exhibits an adhesion force of 100 gf or more, where the adhesion force is the maximum value of a pull force between a layer of the toner and standard paper determined by a tacking test with a probe temperature of 140° C.
Abstract:
Provided is a toner containing a binder resin. The binder resin contains a crystalline resin. The toner has a maximum endothermic peak temperature (P1) of from 50° C. to 80° C. and a total endothermic amount (Q) of from 35 J/g to 90 J/g at a first temperature elevation of differential scanning calorimetry. A ratio (Qp/Q) of a total endothermic amount (Qp) of the toner in a temperature range of from 20° C. to the maximum endothermic peak temperature (P1) to the total endothermic amount (Q) of the toner is from 0.65 to 0.83.
Abstract:
A particulate material production apparatus is disclosed. The particulate material production apparatus includes a droplet ejector to eject droplets of a particulate material composition liquid or a melted particulate material composition in a droplet ejection direction from nozzles; a solidifying device to solidify the droplets; a first airflow forming device to form a first airflow to feed the ejected droplets to the solidifying device with the first airflow; and a second airflow forming device to form a second airflow to apply the second airflow the droplets before the droplets are fed by the first airflow. The second airflow forming device forms the second airflow by supplying a pressed gas from a slit, and the traveling direction of the first airflow is substantially perpendicular to the droplet ejection direction.
Abstract:
A carrier for use in a two component developer for developing an electrostatic latent image is provided. The carrier includes a particulate core material; and a cover layer located on a surface of the core material and including a silicone resin and barium sulfate. The cover layer includes Ba and Si at an atomic ratio of from 0.01 to 0.08 as determined by X-ray photoelectron spectroscopy.
Abstract:
A cleaning method for cleaning a droplet ejector, which includes nozzles to eject a particulate material composition liquid, and a nozzle plate bearing the nozzles is provided. The cleaning method includes forming a substantially closed cleaning space outside the nozzles and the nozzle plate; supplying a cleaning liquid to the cleaning space so that the nozzles and the nozzle plate are contacted with the cleaning liquid; and vibrating the cleaning liquid when the nozzles and the nozzle plate are contacted with the cleaning liquid to clean the nozzles and the nozzle plate.
Abstract:
Toner contains a binder resin containing a crystalline resin having a urethane and/or urea bonding; and a colorant, wherein in a diffraction spectrum of the toner as measured by an X-ray diffraction instrument, a ratio {C/(C+A)} of an integral intensity C of the spectrum derived from the crystalline structure to an integral intensity A of the spectrum derived from the non-crystalline structure is 0.12 or greater, wherein the toner satisfies the following relation 1: T1−T2≦30° C. (Relation 1), where T1 represents the maximum endothermic peak in the first temperature rising from 0° C. to 100° C. at the temperature rising rate of 10° C./min and T2 represents the maximum exothermic peak in the first temperature falling from 100° C. to 0° C. at the temperature falling rate of 10° C./min as T1 and T2 are measured by diffraction scanning calorimetry (DSC).
Abstract:
A carrier, including a magnetic particulate core material and a resin layer on the core material, wherein the resin layer includes a resin obtained by heat treatment of a copolymer including a site derived from a monomer component having the following formula (1) and a site derived from a monomer component having the following formula (2), and includes a cross-linked material obtained by hydrolysis of the copolymer to produce a silanol group and condensation using an organotitanium compound: wherein R1 represents a hydrogen atom or a methyl group; m represents an alkylene group having 1 to 8 carbon atoms; R2 represents an alkyl group having 1 to 4 carbon atoms; R3 represents an alkyl group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms; X represents 10 to 90 mol %; and Y represents 10 to 90 mol %.