Abstract:
Provided is a nanofiber production apparatus which is capable of eliminating a need to use high voltage as in the ESD system to ensure high safety, and is free from influence of temperature and humidity at a production site. The nanofiber production apparatus comprises: a nanofiber generation device (2) comprising an air nozzle configured to generate high-speed and high-temperature air, and an ejector nozzle configured to eject a liquid polymer toward the high-speed and high-temperature air generated by the air nozzle; a collection device (6) provided on a downstream side of the nanofiber generation device (2) and configured to collect nanofibers generated by the nanofiber generation device (2); a suction device (8) provided on a downstream side of the collection device (6) and configured to suck gas; and a tubular-shaped guide member (4) provided on the downstream side of the nanofiber generation device (2) and on an upstream side of the collection device (6) and configured to allow the high-speed and high-temperature air to pass therethrough.
Abstract:
Nanofibers are manufactured while preventing explosions from occurring due to solvent evaporation. An effusing unit (201) which effuses solution (300) into a space, a first charging unit (202) which electrically charges the solution (300) by applying an electric charge to the solution (300), a guiding unit (206) which forms an air channel for guiding the manufactured nanofibers (301), a gas flow generating unit (203) which generates, inside the guiding unit (206), gas flow for transporting the nanofibers, a diffusing unit (240) which diffusing the nanofibers (301) guided by the guiding unit (206), a collecting apparatus which electrically attracts and collects the nanofibers (301), and a drawing unit (102) which draws the gas flow together with the evaporated component evaporated from the solution (300) are included.
Abstract:
A carried material is carried only on a surface of nano-fibers. It includes a raw material liquid spray step that sprays raw material liquid, which is a raw material of nano-fibers, into a space, a raw material liquid electrically charging step, which applies an electric charge to the raw material liquid and makes the raw material liquid electrically charged, a nano-fiber manufacturing step that manufactures the nano-fibers by having the electrically charged and sprayed raw material liquid explode electrostatically, a carried material electrically charging step that electrically charges a carried material carried on the nano-fibers with a polarity opposite to a polarity of the electrically charged nano-fibers, and a mixing step that mixes the manufactured nano-fibers and the electrically charged carried material in a space.
Abstract:
There is provided a battery condition detecting apparatus including a unit for detecting a secondary battery temperature, a unit for calculating a capacity holding rate of the secondary battery, a unit for detecting a secondary battery voltage, a unit for calculating a waiting time between a time point when a current becomes a predetermined current value or smaller and a time point when a voltage variation per a unit time based on a battery property indicative of a relationship among a temperature of the secondary battery, a capacity holding rate, and the waiting time in response to the temperature detected by the unit and a capacity holding rate calculated by the unit, and a unit for estimating a condition of a residual quantity of the secondary battery based on the voltage detected by the unit after the waiting time calculated by the unit elapses.
Abstract:
Provided is a nano-fiber manufacturing apparatus which manufactures nano-fibers by an electrostatic explosion, and has a low possibility of explosion even when a flammable solvent is used. The nano-fiber manufacturing apparatus (101) having an ejection unit (110) which ejects solution (200) that is raw material liquid for nano-fibers (200) to a manufacturing space in which the nano-fibers (200) are manufactured by an electrostatic explosion of the solution (200), and a charging unit which charges the solution (200). The nano-fiber manufacturing apparatus (101) includes a gas supply source (103) which supplies safety gas to change an atmosphere of the manufacturing space, in which the solution (200) is ejected, into a low oxygen atmosphere, and a partition (102) which maintains the manufacturing space at a lower oxygen atmosphere than an atmosphere of an outside space of the partition (102).
Abstract:
A nanofiber spinning method and device for producing a high strength and uniform yarn made of nanofibers. The device includes: a nanofiber producing unit (2) which produces nanofibers (11) by extruding polymer solution, prepared by dissolving polymeric substances in a solvent, through small holes (7) and charging the polymer solution, and by allowing the polymer solution to be stretched by an electrostatic explosion, and which allows the nanofibers to travel in a single direction; a collecting electrode unit (3) to which an electric potential different from that of the charged polymer solution is applied, and which attracts the produced nanofibers (11) while simultaneously rotating and twisting the nanofibers, and gathers them for forming a yarn (20) made of the nanofibers (11); and a collecting unit (5) which collects the yarn (20) passed through the center of the collecting electrode unit (3).
Abstract:
Nanofibers are formed from a polymer material by rotating a conductive rotating container having a plurality of small holes while supplying a polymer solution formed by dissolving a polymer material in a solvent into the rotating container, charging the polymer solution discharged from the small holes of the rotating container by charging means, and drawing the discharged filamentous polymer solution by centrifugal force and an electrostatic explosion resulting from evaporation of the solvent. The nanofibers from this production step are oriented and made to flow from one side toward the other side in a shaft center direction of the rotating container by a reflecting electrode and/or blowing means, or those nanofibers are deposited, to produce a polymer web. The nanofibers and the polymer web using these nanofibers can be produced uniformly by a simple configuration with good productivity.
Abstract:
An electrostatic spray apparatus configured such that multiple spinning units, each having multiple nozzles arranged two-dimensionally to electrostatically spray a polymer solution and a first collector disposed so as to be opposed to the multiple nozzles via an insulating sheet, are installed on collecting sections for holding a moving collecting sheet, and such that an air stream is formed orthogonal to the spray direction from the nozzles to the first collector and toward the collecting sheet inside the spinning unit.
Abstract:
2-ALKYL-5-OXIMINOCYCLOPENTANONE USEFUL AS THE RAW MATERIAL OF PERFUME AND OTHER CHEMICALS, THE CHEMICAL STRUCTURE OF WHICH MAY BE EXPRESSED BY THE GENERAL FORMULA: ##EQU1## where R is a lower alkyl group, and the method of preparing the same.
Abstract:
A method of preparing 2-hydroxy-3-alkyl-2-cyclopenten-1-one which comprises reacting 2-alkyl-5-carboalkoxycyclopentanone with nitrite in the presence of water and alkali; rendering the reaction system acidic; and either treating the mass for hydrolysis by heating or carrying out oxime exchange reaction in the presence of an aliphatic lower carbonyl compound added as an acceptor to the acidified reaction system.