Abstract:
Rigid, closed-cell, flame-resistant polyurethane foams are produced by reacting a polyol mixture with a polyphenyl-polymethylene-polyisocyanate in the present of a catalyst system. The polyol mixture includes: (1) from 25 to 43 wt % flame proofing agent, (2) from 5 to 50 wt % sucrose polyether having an OH number of from 350 to 550, (3) from 0 to 30 wt % amine initiated polyethers having an OH number of from 400 to 800, (4) from 0 to 30 wt % other polyether or polyester having an OH number of from 150 to 600, (5) from 4 to 13 wt % glycerol, (6) from 0.5 to 3 wt % silicone stabilizer and (7) from 0.05 to 1.5 wt % water. The catalyst system is made up of at least two components selected from tertiary amines, alkali metal carboxylates, quaternary ammonium carboxylates and organic tin compounds. The reactants are employed in quantities such that the NCO to OH equivalent ratio is from 1.07 to 1.45 (the isocyanate-index is from 1.07 to 1.45). The foams of the present invention are particularly useful in the production of roof insulating boards, insulation of containers, pipelines, etc. and for sealing and insulating roofs and walls.
Abstract:
Flame resistant polyurethane foams are made by reacting a polyisocyanate with a specific polyol composition. This polyol composition is made up of (a) at least 10 wt. % of a polyether formed by the addition of alkylene oxide(s) to 2,3- and/or 3,4-tolylenediamine having an OH number of from 400 to 520, (b) at least 20-50 wt. % flame retardant containing phosphorus and/or halogen, (c) 5-10 wt. % chain lengthening or cross-linking agent, (d) surface active agents, (e) water and (f) 0-30 wt. % polyhydroxyl compound(s) other than (a) having a molecular weight of from 300 to 10,000.
Abstract:
The invention is directed to a process for protecting the edges of a panel by applying a non-sagging polyurethane composition to the edges of said panel, and allowing the composition to cure.
Abstract:
Combustion modified foams are produced by reacting an organic aromatic polyisocyanate with an isocyanate reactive compound in the presence of a blowing agent and Mg(OH).sub.2. The Mg(OH).sub.2 is generally used in a quantity of from 4-100 parts by weight based on the foam taken as 100 parts by weight. Mg(OH).sub.2 having a particle size of from 0.5-50 .mu.m is preferably used. The foams produced by the process are particularly useful in construction applications.