Abstract:
A description is given of an absorption medium for removing carbon dioxide from a gas stream, which comprises an aqueous solution of at least one amine and at least one aminocarboxylic acid and/or aminosulfonic acid. The concomitant use of an aminocarboxylic acid or aminosulfonic acid reduces the energy required for regeneration of the absorption medium.
Abstract:
A description is given of an absorption medium for removing carbon dioxide from gas streams which comprises aqueous solution of an amine of the formula I HNR2 (I) where one or both radicals are and the other radical R is hydrogen. The absorption medium is distinguished by particular oxidation resistance.
Abstract:
A method for obtaining an acid gas stream having a pressure of from 3 to 30 bar by removal of the acid gases from a liquid stream comprising as impurities H2S and if appropriate other acid gases, the molar fraction of H2S, based on the total amount of acid gases, being at least 50 mol %, which comprises a) in at least one absorption step, bringing the fluid stream into intimate contact with a liquid absorption medium and thus producing a fluid stream substantially freed from acid gases and an acid-gas-loaded liquid absorption medium (step a), b) separating from one another the fluid stream substantially freed from acid gases and the acid-gas-loaded liquid absorption medium (step b), c) separating, by heating and if appropriate expansion or stripping, the acid-gas-loaded liquid absorption medium into an acid gas stream having a pressure of from 3 to 30 bar and a regenerated liquid absorption medium (step c) d) passing the regenerated liquid absorption medium into a heat exchanger and cooling it there, by using a part of its thermal energy to heat up the acid-gas-loaded liquid absorption medium in step (c) (step d) e) recirculating the regenerated liquid absorption medium to step a) (step e).
Abstract:
Method of simulating mass and heat transfer-controlled separation processes using a core-film approach to describe a transfer taking place at a phase boundary (P) in which, for iteratively solving a suitable implicit differential equation system, discretisation of a transitional area (10) of the core-film approach under consideration is carried out, thereby resulting in a differential equation system.
Abstract:
A premix is described for producing an absorption medium for removing acid gases from fluid streams. The premix comprises at least one alkanolamine, piperazine and water, the premix having a total amine content of more than 65% by weight, the molar ratio of water to piperazine in the premix being 1.6 to 4.8. The premix is characterized by a low solidification point. It is diluted with water and/or alkanolamine to give the ready-to-use absorption medium.
Abstract:
A process for removing carbon dioxide from a fluid flow, wherein a) the fluid flow is brought into contact with an absorption agent which contains a solution of ammonia and at least one amino carboxylic acid and/or amino sulfonic acid, a charged absorption agent being obtained, and b) the charged absorption agent is regenerated while releasing carbon dioxide. The additional use of the amino carboxylic acid and/or amino sulfonic acid increases the circulation absorption capacity of the absorption agent.
Abstract:
A description is given of an absorption medium for removing carbon dioxide from a gas stream, which comprises an aqueous solution of at least one amine and at least one aminocarboxylic acid and/or aminosulfonic acid. The concomitant use of an aminocarboxylic acid or aminosulfonic acid reduces the energy required for regeneration of the absorption medium.
Abstract:
A process for removing carbon dioxide from a fluid flow, wherein a) the fluid flow is brought into contact with an absorption agent which contains a solution of ammonia and at least one amino carboxylic acid and/or amino sulfonic acid, a charged absorption agent being obtained, and b) the charged absorption agent is regenerated while releasing carbon dioxide. The additional use of the amino carboxylic acid and/or amino sulfonic acid increases the circulation absorption capacity of the absorption agent.
Abstract:
The invention relates to a method for the removal of carbon dioxide from a gas flow with a carbon dioxide partial pressure in the gas flow of less than 200 mbar, whereby the gas flow is brought into contact with a liquid absorption agent, selected from an aqueous solution (A) of an amino compound with at least two tertiary amino groups in the molecule and (B) an activator, selected from the primary and secondary amines, or (A) a tertiary aliphatic amine, the reaction enthalpy ΔRH for the protonation of which is greater than that for methyldiethanolamine and (B) an activator, selected from 3-methylaminopropylamine, piperazine, 2-methylpiperazine, N-methylpiperazine, homopiperazine, piperidine and morpholine. The method is particularly suitable for the treatment of flue gases and also relates to an absorption agent.
Abstract:
A description is given of a process for removing carbon dioxide from gas streams in which the partial pressure of the carbon dioxide is less than 200 mbar, in particular flue gases, the gas stream being contacted with a liquid absorption medium which comprises an aqueous solution (A) of a tertiary aliphatic alkanolamine and (B) an activator of the formula R1—NH—R2—NH2, where R1 is C1-C6-alkyl and R2 is C2-C6-alkylene, the sum of the concentrations of A and B being 2.5 to 7 mol/l, and the molar ratio of B to A being in the range of 1:3 to 1.5:1. The activator is, for example, 3-methylaminopropylamine, the tertiary aliphatic amine methyldiethanolamine, methyldiisopropanolamine or n-butyldiethanolamine. The process permits substantial removal of carbon dioxide and the regeneration of the absorption medium is possible with relatively low energy consumption.