Abstract:
A protective device is disclosed for combination with an electrical switching device including a main current line or for integration in such a switching device. In at least one embodiment, the protective device includes a switching element and a switching apparatus, which is provided for the actuation of the switching element and is influenced by a current flow through the main current line. In at least one embodiment, in order to influence the switching apparatus, a current transformer is integrated in the main current line and an electrical resistance of a secondary winding surrounded by the current transformer can be measured. A method for operating a protective device is also disclosed wherein the switching apparatus is triggered so as to actuate the switching element if the measured resistance reaches or exceeds a predetermined or predeterminable threshold value.
Abstract:
A method and a device for secure operation of a switching device including at least two main contacts which can be switched on and off and include contact pieces and a displaceable contact bridge, and a control magnet having a displaceable anchor. The method may include producing an electric control signal to release a contact breaking device when the control magnets are switched on and off. The emitted control signal lies outside the ON state of the switching contact during the regular operation of the switching device and releasing the contact breaking device in defective operation of the switching device if the switching contact remains in the ON state when the control magnets are switched on or off. The switching contact may connect through the control signal to release the contact breaking device.
Abstract:
A method for producing a solenoid with a center limb and two outer pole shanks that have one pole surface each and one back resting so that it faces away from it. The back is first at least partially freely formed. The solenoid is then elastically tensioned towards the back by a tensioning device. In the tensioned state, the pole surfaces are ground so that the solenoid, when withdrawn from the tensioning device, has a convex support surface constituted by the pole surfaces.
Abstract:
Sulfonated and oxidized indene polymers obtainable by (a) polymerization of indene or indene derivatives of the general formula I ##STR1## where R.sup.1 is hydrogen, methyl or ethyl and n is 1 or 2, or of mixtures which contain the compounds I as well as other copolymerizable and/or non-polymerizable organic compounds in an amount of at least 10% by weight, b) sulfonation of the polymer with a sulfonating agent at from 40.degree. to 130.degree. C., and c) non-chain-degrading oxidation of the polymer at from 80.degree. to 180.degree. C. These indene polymers are suitable for use as dispersants for example in dye and pigment preparations.
Abstract:
Condensates of arenesulfonic acids and formaldehyde are prepared by sulfonating arenes obtainable by thermal cracking of a naphthenic residue oil and fractional distillation of the cracked products of the fraction obtained at 100-120.degree. C. under atmospheric pressure, sulfonating this aromatics fraction with oleum at 120.degree.-160.degree. C. using an amount of from 0.7 to 1.2 parts by weight of oleum having an SO.sub.3 content of 24% by weight per part by weight of aromatics fraction, and subsequently condensing the arenesulfonic acids with formaldehyde in a conventional manner, and are used as dispersants, in particular for preparing dye formulations.
Abstract:
Dispersants of increased bioeliminability or biodegradability for use in dye and pigment preparations, as tanning aids, in plastics production and in crop protection formulations contain from 3 to 50% by weight of one or more aromatic or long-chain aliphatic carboxylic acids, salts thereof or anhydrides thereof or a mixture thereof.
Abstract:
At least one embodiment of the invention relates to a switch device particularly a low-voltage switch device, having an actuation magnet chamber by at least one spring element, having at least one displaceable switch contact and at least one stationary switch contact, wherein the at least one displaceable switch contact can be displaced by the actuation magnet, the magnet chamber comprising an assembly opening for inserting or removing a tolerance insert. At least one embodiment of the invention further relates to a method for inserting or removing a tolerance insert in a magnet chamber of such a switch device.
Abstract:
A switching device unit is disclosed for switching at least two operating states of at least one consumer to an at least two-phase electrical supply system by way of switching elements. At least one embodiment of the invention specifies a switching device unit which has as simple a construction as possible and is as cost-effective and compact as possible. For this purpose, the switching device unit contains circuits for operational switching of the consumer, for implementing the tripping function for protection against overload and short circuits, wherein these circuits are integrated in such a way that the switching device unit, in particular in terms of its function as a compact reversing starter, can have a standardized width in order to be installed in a space-saving manner on a top-hat rail in a switchgear cabinet and in order to be operated.
Abstract:
A method and a device are disclosed for the secure operation of a switching device including at least one main contact which can be switched on and off and which includes contact pieces and a displaceable contact bridge, and at least one control magnet which includes a displaceable anchor. The anchor and the contact bridge are actively connected to each other such that the corresponding main contact can be opened or closed when switched on and off. In at least one embodiment, the method includes the following: a) the path difference, which returns the anchor after switching on and off, is recognised, b) devices which are used to open welded main contacts are released by a release device when the recognised path difference exceeds a predetermined value and a specific time duration of time has run out after switching off.
Abstract:
A method and a device are disclosed for the secure operation of a switching device including at least two main contacts which can be switched on and off and which includes respectively, contact pieces and a displaceable contact bridge, and at least one control magnet which includes a displaceable anchor. The anchor acts upon the contact bridge when it is switched on and off such that the corresponding main contact is opened or closed. At least one embodiment of the inventive method includes the following steps: a) release device for a force element remains in a first state in order to interrupt the main contact as long as the main contacts are closed when switched on and open when switched off, and b) the release device are transferred into a second state if at least the main contact is welded after switching off.