Abstract:
In some embodiments of the present invention, a method of reducing artifacts includes obtaining OCT/OCTA data from an OCT/OCTA imager; preprocessing OCTA/OCT volume data; extracting features from the preprocessed OCTA/OCT volume data; classifying the OCTA/OCT volume data to provide a probability determination data; determining a percentage data from the probability data determination; and reducing artifacts in response to the percentage data.
Abstract:
A method of processing a 3D OCT dataset is present. A method according to some embodiments of the present invention includes obtaining an OCT data from the 3D OCT dataset; obtaining an OCTA data from the 3D OCT dataset; performing segmentation for at least one boundary on the OCT data; processing the OCTA data in a region of interest to create at least one image representation by assigning a value to each pixel of each of the image representation; and displaying at least one image representation.
Abstract:
Optical Coherence Tomography Angiography (OCTA) image representation is obtained having OCTA pixels assigned respective OCTA values. A vessel density map is computed from the OCTA image representation. A fractional deviation map and/or a pattern deviation map is computed for the patient from the vessel density map and a normative database, wherein: (1) the fractional deviation map represents a percent loss of vessel density at each pixel location relative to an expected value based on the normative database; and (2) computing the pattern deviation map includes: computing a pattern map of the vessel density representing a normalized vessel density pattern of the vessel density map relative to an average value of the vessel density map; and computing the pattern deviation map using the pattern map. A loss is determined by using at least one of the fractional deviation map and the pattern deviation map. Other features are also provided.
Abstract:
An imager that can provide separated images corresponding to differing depths in a sample is presented. In accordance with some embodiments of the invention, an imager can include a light source; a sample arm that receives light from the light source, directs the light to a sample, and captures light returning from the sample; a modulation source that provides different modulations corresponding to differing imaging depths in the sample; a detector system to receive the captured light from the sample with the different modulations; and a processor that receives signals from the detector system and separates a plurality of images corresponding with the differing image depths in the sample.
Abstract:
A method of processing a 3D OCT dataset is present. A method according to some embodiments of the present invention includes obtaining an OCT data from the 3D OCT dataset; obtaining an OCTA data from the 3D OCT dataset; performing segmentation for at least one boundary on the OCT data; processing the OCTA data in a region of interest to create at least one image representation by assigning a value to each pixel of each of the image representation; and displaying at least one image representation.
Abstract:
In some embodiments of the present invention, a method of reducing artifacts includes obtaining OCT/OCTA data from an OCT/OCTA imager; preprocessing OCTA/OCT volume data; extracting features from the preprocessed OCTA/OCT volume data; classifying the OCTA/OCT volume data to provide a probability determination data; determining a percentage data from the probability data determination; and reducing artifacts in response to the percentage data.
Abstract:
A method of processing a 3D OCT dataset is present. A method according to some embodiments of the present invention includes obtaining an OCT data from the 3D OCT dataset; obtaining an OCTA data from the 3D OCT dataset; performing segmentation for at least one boundary on the OCT data; processing the OCTA data in a region of interest to create at least one image representation by assigning a value to each pixel of each of the image representation; and displaying at least one image representation.
Abstract:
An imaging method is disclosed. An imaging method according to some embodiments can include obtaining a plurality of measurements of an eye for at least one location by scanning optical radiation across the eye; determining a preferred measurement axis from the plurality of measurements; and processing the plurality of measurements to obtain information of the eye.
Abstract:
A method of measurement is presented. A method of measurement according to some embodiments of the present invention includes obtaining a first measurement from a first imaging method; obtaining a second measurement from a second imaging method; combining the first and the second measurement to obtain a structural information and an image representation of a structure of an eye; calculating at least one shape parameter from the structural information; and displaying the image representation of the structure of the eye.
Abstract:
An imaging method is disclosed. An imaging method according to some embodiments can include obtaining a plurality of measurements of an eye for at least one location by scanning optical radiation across the eye; determining a preferred measurement axis from the plurality of measurements; and processing the plurality of measurements to obtain information of the eye.