Abstract:
A wearable neutron detector is disclosed that includes a body attachment portion that is configured to be secured to a portion of a human body. The wearable detector includes a scintillator having a plurality of wavelength optical shifting fibers. One or more light converters are connected with the wavelength optical shifting fibers. A detection circuit is connected with the light converters configured to detect a neutron event. A control unit is connected with the detection circuit. An annunciator is connected with the control unit for generating an enunciation of the neutron event. The electronic components are housed within the body attachment portion.
Abstract:
A system for efficient neutron detection is described. The system includes a neutron scintillator formed with a number of protruding parallel ribs each side of the scintillator, forming a first set of ribs and a second set of ribs. The ribs have a protrusion height that provides a selected neutron absorption efficiency. The system includes a set of wavelength shifting fibers positioned between each adjacent pair of ribs on both the first side and the second side. Each set of wavelength shifting fibers are in optical proximity to the adjacent pair of the ribs that set of fibers are positioned between.
Abstract:
A wearable neutron detector is disclosed that includes a body attachment portion that is configured to be secured to a portion of a human body. The wearable detector includes a scintillator having a plurality of wavelength optical shifting fibers. One or more light converters are connected with the wavelength optical shifting fibers. A detection circuit is connected with the light converters configured to detect a neutron event. A control unit is connected with the detection circuit. An annunciator is connected with the control unit for generating an enunciation of the neutron event. The electronic components are housed within the body attachment portion.
Abstract:
A neutron detector circuit for a neutron detector is disclosed that includes a scintillator having a plurality of wavelength shifting optical fibers. A first detection circuit is connected with a first PMT output that is configured to generate a first detection circuit output in response to a first neutron event. A second detection circuit is connected with a second PMT output that is configured to generate a second detection circuit output in response to a second neutron event. A coincidence detection circuit is included that has inputs connected with the first and second detection circuit outputs that is configured to generate a neutron event count output pulse in response to coincident signals being received by the coincidence detection circuit from the first and second detection circuit outputs.
Abstract:
A neutron detector circuit for a neutron detector is disclosed that includes a scintillator having a plurality of wavelength shifting optical fibers. A first detection circuit is connected with a first PMT output that is configured to generate a first detection circuit output in response to a first neutron event. A second detection circuit is connected with a second PMT output that is configured to generate a second detection circuit output in response to a second neutron event. A coincidence detection circuit is included that has inputs connected with the first and second detection circuit outputs that is configured to generate a neutron event count output pulse in response to coincident signals being received by the coincidence detection circuit from the first and second detection circuit outputs.