Abstract:
An elevator installation has at least three vertical elevator shafts arranged adjacent to one another, at least one boarding zone and a plurality of individually movable elevator cars. At least two directly adjacent changeover zones are provided in the region of the boarding zone and enable horizontal displacement of the elevator cars between the elevator shafts.
Abstract:
A method and system for supervising the safety of an elevator having a car driven by a drive within a hoistway wherein a travel parameter (XABS,X″Acc,X′IGB) of the car is sensed and continually compared with a similarly sensed travel parameter (X′IG) of the drive. If the comparison shows a large deviation between the two parameters, an emergency stop is initiated. Otherwise one of the travel parameters (XABS,X″Acc X′IGB; X′IG) is output as a verified signal (X;X′). The verified signal is then compared with predetermined permitted values. If it lies outside the permitted range then an emergency stop is initiated.
Abstract:
An elevator installation has a vertical elevator hoistway and a plurality of elevator cars individually movable therein. An elevator control system readies at least two of the elevator cars in the hoistway in an area of two mutually adjacent entrance areas. Thus, simultaneous loading/unloading of the elevator cars via the entrance areas is possible. The two elevator cars then travel to destination floors, the first elevator car traveling a distance which is at least as great as that traveled by the second elevator car.
Abstract:
An elevator installation has a vertical elevator hoistway and a plurality of elevator cars individually movable therein. An elevator control system readies at least two of the elevator cars in the hoistway in an area of two mutually adjacent entrance areas. Thus, simultaneous loading/unloading of the elevator cars via the entrance areas is possible. The two elevator cars then travel to destination floors, the first elevator car traveling a distance which is at least as great as that traveled by the second elevator car.
Abstract:
Safety system of an elevator installation, with a control unit, a bus node, a safety element and a bus, which enables a communication between the control unit and the bus node. The bus node includes a first switching arrangement, which on digital presetting by the control unit acts on the safety element by a first analog signal. The bus node additionally includes a second switching arrangement which derives an analog signal from the safety element and makes digital feedback information available to the control unit by way of the bus.
Abstract:
An elevator installation with an elevator car moveable in an elevator hoistway by means a drive unit is controlled by a control unit. Sensors monitor the status of the elevator installation and are each connected via an assigned bus node to a data bus and thereby connected to the control unit. In order to obtain improved operational safety and improved availability, each sensor controls a voltage supply of the associated bus node.
Abstract:
A method for preventing an inadmissibly high speed of a load receiving unit of an elevator, including the steps of supplying information about an actual position and an actual speed of the load receiving unit in an area of an entire travel way of the load receiving unit to a speed monitoring device by at least one measuring system, continuously comparing the actual speed with a speed limit value by the speed monitoring device, and activating braking measures if the speed of the load receiving unit exceeds a speed limit value. At least three different braking measures are successively triggered by the speed monitoring device.
Abstract:
An elevator installation with an elevator car moveable in an elevator hoistway by means a drive unit is controlled by a control unit. Sensors monitor the status of the elevator installation and are each connected via an assigned bus node to a data bus and thereby connected to the control unit. In order to obtain improved operational safety and improved availability, each sensor controls a voltage supply of the associated bus node.
Abstract:
A method for monitoring shaft doors of a elevator installation uses at least one contactlessly acting shaft door monitoring sensor to emit a beam of electromagnetic waves, wherein at least during specific detection phases the beam extends over several floors and is detected by a receiver. The beam is influenced by a shaft door panel not being completely closed and/or a shaft door lock not being disposed in the locking setting such that a disturbance signal is generated to the elevator control.
Abstract:
A shaft monitoring system for an elevator installation includes a contactless sensor enabling recognition from the elevator car whether a shaft door lock and a shaft door leaf are in a correct locked setting. A securing device mechanically secures the shaft door lock in order to prevent opening of the shaft door and is mechanically and/or electromagnetically actuatable from the elevator car. The contactless sensor includes an active sensor part arranged at the car door and a passive sensor part arranged at the shaft door lock to be monitored. The active sensor part interacts with the passive sensor part as soon as the elevator car stops behind the shaft door and the shaft door leaf and the shaft door lock are disposed in the correct locked setting. The active sensor part also can transiently interact with the passive sensor part when the elevator car moves past the shaft door.