Abstract:
A discharge lamp and a method for forming the lamp, the lamp including a ceramic discharge vessel defining at least part of a cavity containing a metal halide (MH) chemical filling having a power factor of between about 0.75 and 0.85 located within the cavity; and one or more feedthroughs having first and second ends, the first end located in the cavity. The cavity may have an internal length LINT and an internal diameter DINT that are proportional to each other, such that an aspect ratio defined as LINT/DINT is less than or equal to two. The lamp may be started and operated with a probe-start ballast without an internal igniter circuit or without a starting electrode (or internal igniter).
Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor® series having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gas-tight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gas-tight connection. In addition, the lamps display one or more and most preferably all of the following properties: a CCT (correlated color temperature) of about 3800 to about 4500 K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about ±10, and a luminous efficacy up to about 85-95 lumens/watt, a lumen maintenance of >80%, color temperature shift
Abstract:
A reflector lamp having an outer reflector envelope filled with a rare gas at a pressure of approximately one atmosphere during lamp operation, a high pressure sodium discharge device within the outer envelope, and support conductors for mounting the discharge device. A sleeve over one of the support conductors helps prevent electrical breakdown through the rare gas.
Abstract:
A hub for mounting a plurality of wheels of a vehicle, the hub including: an annular cylinder including at least two tire mounts disposed about a circumference of an outer surface of the cylinder, each of the mounts including at least one set of mounting features for receiving mounting hardware and retaining the tire. A dual wheel assembly and a vehicle are also disclosed.
Abstract:
A discharge lamp and a method for forming the lamp, the lamp including a ceramic discharge vessel defining at least part of a cavity containing a metal halide (MH) chemical filling having a power factor of between about 0.75 and 0.85 located within the cavity; and one or more feedthroughs having first and second ends, the first end located in the cavity. The cavity may have an internal length LINT and an internal diameter DINT that are proportional to each other, such that an aspect ratio defined as LINT/DINT is less than or equal to two. The lamp may be started and operated with a probe-start ballast without an internal igniter circuit or without a starting electrode (or internal igniter).
Abstract:
A delivery service system includes a cabinet having a plurality of controlled-access storage cells, located in a plurality of zones, a user interface, a user evaluation device, and a processor. The system receives a user request to accept an item for delivery, detects user physical characteristics, and provides user access to a storage cell in a selected zone, the zone being selected based on the detected user physical characteristics.
Abstract:
A delivery service system includes a cabinet having a plurality of controlled-access storage cells, located in a plurality of zones, a user interface, a user evaluation device, and a processor. The system receives a user request to accept an item for delivery, detects user physical characteristics, and provides user access to a storage cell in a selected zone, the zone being selected based on the detected user physical characteristics.
Abstract:
A system and method for recharging a battery of a mobile device for a fee authorized by a financial account control server can include a battery recharging station having at least one recharging connection for a mobile device. The battery recharging station can be in communication with an electronic data connection for selective activation and deactivation of power supplied to the at least one recharging connection for recharging a battery of a mobile device. A recharging service control server can be operable to remotely control activation and deactivation of power supplied to the at least one recharging connection located at the battery recharging station through the electronic data connection in response to receipt of communication from the financial account control server regarding validation and acceptance of payment by a user of the battery recharging station.
Abstract:
A low power ceramic gas discharge metal halide (CDM) lamp 10 capable of retrofitting into existing low power HPS lamp fixtures, the CDM lamp 10 having an elliptically-shaped ceramic discharge vessel 12 containing a mixture of the rare gases neon and argon at a fill pressure of at least 400 mbar, and a pair of electrodes (17, 18) extending into the discharge vessel 12, the electrodes (17, 18) having an electrode clearance ratio E=D1/D2 of at least 0.36, where D1 is the shortest distance from an electrode (17) tip to the inner wall of the central portion 13 of the discharge vessel 12 and D2 is the distance between the discharge electrodes 17 and 18.
Abstract:
The invention relates to a high-pressure discharge lamp of the ceramic metal halide type of the Philips MasterColor series having a molybdenum coil wrapped around the discharge vessel and at least a portion of the electrode feed through means, and having power ranges of about 150 W to about 1000 W. Such lamps are provided with a discharge vessel which encloses a discharge space. The discharge vessel has a ceramic wall and is closed by a ceramic plug. An electrode which is located inside the discharge space is connected to an electric conductor by way of a leadthrough element. The leadthrough element projects through the ceramic plug with a close fit and is connected thereto in a gastight manner by way of a sealing ceramic. The leadthrough element has a first part which is formed by a cermet at the area of the gastight connection. In addition, the lamps display one or more and most preferably all of the following properties: a CCT (correlated color temperature) of about 3800 to about 4500K, a CRI (color rendering index) of about 70 to about 95, a MPCD (mean perceptible color difference) of about +10, and a luminous efficacy up to about 85-95 lumens/watt, a lumen maintenance of >80%, color temperature shift